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Abstract

This paper advances inference in nonlinear state-space models by deriving the dis-
tribution of initial endogenous states conditional on initial observations, addressing
the general unknown nature of the unconditional distribution. Together with the in-
version filter, this allows the likelihood to be evaluated deterministically and condi-
tional on the initial observations. Such conditional likelihoods are commonly used
in practice, e.g., when estimating autoregressive processes via least squares. Monte
Carlo studies demonstrate that employing the conditional distribution of endogenous
states can significantly enhance both Frequentist and Bayesian inference concerning
states and parameters. The paper illustrates the method’s practical relevance with
two applications: first, a Monetary Business Cycle Accounting analysis of the COVID-
19 recession and subsequent inflation surge in the US and Eurozone using a global
solution; second, an evaluation of uncertainty shocks on the US business cycle during
the Great Moderation via a third-order perturbation method. Additionally, the paper
discusses limitations of the inversion filter and proposes remedies, particularly for spu-
rious many-to-one policy function mappings that arise with higher-order perturbation
solutions.
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1 INTRODUCTION

Macroeconomics requires nonlinear solutions to capture complex or asymmetric responses
to shocks, as well as global solutions to handle large disturbances such as the COVID-19
pandemic. Conducting inference and parameter estimation in these models, in turn, ne-
cessitates the use of nonlinear filters. The inversion filter (Fair and Taylor, 1983) offers a
computationally attractive method for this purpose, recovering latent shocks by inverting
the observation equation. The change-of-variables theorem allows the likelihood of the
data to be expressed as the product of the conditional shock density and the Jacobian de-
terminant. Yet, the filter faces a critical limitation: in applications featuring latent endoge-
nous states, the unknown distribution of the initial endogenous states and the recursive
generation of subsequent states forces the results, including the likelihood, to be strictly
conditional on these unknown initial values.! Conditioning on unknown initial endoge-
nous states biases the resulting likelihood and, consequently, likelihood-based inference
(Boehl and Strobel, 2024).

This paper resolves this limitation by characterizing the distribution of initial endoge-
nous states conditional on initial observations. Using this distribution, the likelihood func-
tion obtained from the inversion filter can be expressed conditional only on the initial ob-
servations, which is standard practice in applied macroeconometrics, for example, when
estimating autoregressive processes via least squares. The derivation of the conditional
distribution of the endogenous states follows the logic of the inversion filter. Under local
invertibility, the initial endogenous states and observations uniquely determine the cor-
responding exogenous shocks. Applying the change-of-variables theorem then allows the
conditional distribution of the endogenous states to be expressed in terms of the stationary
distribution of the shocks and a volume-adjustment term associated with the mapping to
the exogenous shocks.?

The conditional endogenous state distribution enables three distinct likelihood func-
tions: i) integrating out the initial endogenous states to obtain the exact conditional like-
lihood, ii) treating the initial states as parameters in the likelihood, or iii) constructing a

profile likelihood in which the likelihood is maximized with respect to the initial states

'In practice, the endogenous states are set to their steady-state values, and the first 10-20 per-period likeli-
hood contributions are typically discarded to mitigate the impact of the initial condition (e.g., Guerrieri
and Iacoviello, 2017; Kollmann, 2017).

2For mappings from R" — R™ with m > n, this term generalizes the usual Jacobian determinant and is also
referred to as the Gram determinant of the Jacobian.



while remaining conditional on the initial observations. Crucially, when the initial en-
dogenous states are treated as parameters in linearized models, the Jacobian determinant
is constant with respect to these states and is therefore usually ignored during maximiza-
tion with respect to these states.

After deriving the conditional distribution of the endogenous states and the various
forms of the likelihood, I conduct a Monte Carlo analysis using a Dynamic Stochastic
General Equilibrium (DSGE) model with one endogenous state and four first-order au-
toregressive exogenous shocks—the exogenous states. Here, I use a linear-Gaussian ap-
proximation of the model, applied to both the data-generating process and the econo-
metric model, which allows to calculate the likelihood analytically and thereby provides
a tractable benchmark distribution of estimators and posteriors (Herbst and Schorfheide,
2015; Farmer, 2021; Fehrle et al., 2025).

The first exercise focuses on state estimation when the model parameters are known. Us-
ing the conditional distribution of the endogenous states reduces the Root Mean Squared
Error (RMSE) of the initial states by up to 25% compared to a naive initialization at the
model’s stable fixed point. When combined with additional information from the likeli-
hood, the RMSE decreases by nearly 40% relative to the naive initialization. For compar-
ison, Kalman filtering reduces the RMSE of the initial states by slightly more than 40%,
and smoothing achieves reductions of up to 50%.

Building on the state estimation results, which delivers the conditional shock density
needed for the derivation of likelihood, the subsequent exercises shift focus to parame-
ter estimation using Maximum Likelihood (ML) and Bayesian estimation exercises for two
structural parameters and all parameters of the stochastic processes. The usage of the con-
ditional distribution of the endogenous states decreases the RMSE to the exact maximum
likelihood estimates up to 50% compared to a naive initialization. This improvement re-
mains consistent even when incorporating a 10-to-20-period burn-in phase to the naive
initialization. As one of the exogenous states can be inferred independent of the endoge-
nous state, i.e., directly from the data, the corresponding estimates are equivalent to es-
timating an autoregressive process using least squares. Most of the remaining parameter
estimates yield RMSE of a similar magnitude when using the conditional endogenous state
distribution.

When evaluating the whole posterior with uninformative priors, the improvement is
even greater, with the RMSE reduced by up to 75%. The benefits of using the conditional

endogenous state distribution are also evident in state estimation with estimated parame-



ters and in forecasting based on estimated parameters.

I use these insights for two applications. First, I conduct a Monetary Business Cycle
Accounting (MBCA) analysis (éustek, 2011; Chari et al., 2007) of the COVID-19-induced
recession and the subsequent inflation surge in the US and the European Monetary Union
(EMU) using a global solution method. It turns out that the labor wedge dominates the re-
cession and drives inflationary pressure at the pandemic peak, while the investment wedge
acts countercyclical but also inflationary. Production efficiency contributes modestly. The
bond and monetary wedge act inflationary after the pandemic but suppressed inflation
during the pandemic itself.

As a second application, I measure the impact of uncertainty shocks on the US busi-
ness cycle during the Great Moderation (1985 — 2019) using the model from Basu and
Bundick (2017) with a third-order perturbation. This New-Keynesian model features un-
certainty shocks that can generate co-moving responses in consumption, investment, and
hours worked. By estimating the underlying shock process parameters and a single struc-
tural parameter, together with inferring the latent states, the analysis indicates that uncer-
tainty shocks account for most of the fluctuations during the Great Moderation, whereas
productivity shocks have little influence on the cycle.

Unfortunately, the inversion filter comes not without limitations. In general, due to the
filters logic, it requires a one-to-one (bijective) policy function, which also implies that
the number of observables must equal the number of exogenous states. The initialization
method proposed here introduces a third condition: the number of endogenous states
must not exceed the number of exogenous states. I discuss how these restrictions, while
potentially limiting in theory, do not pose significant constraints for large classes of appli-
cations in macroeconomics and dynamic economics. Moreover, I outline possible remedies
and extensions that can relax or work around these limitations in practice, including cases
where errors from local approximation transform an otherwise one-to-one policy function
into a spurious many-to-one mapping.

Kollmann (2017) addresses the problem of spurious many-to-one mappings that arise
from higher-order Taylor expansions by inverting the pruned policy function of Kim et al.
(2008) and setting the remaining higher-order terms that depend solely on exogenous
states equal to their expected values. In this study, I propose instead using the Lagrange
Inversion Theorem, which provides a formal and systematic method for locally inverting
an analytic function via a series expansion.

The analyses of Amisano and Tristani (2011), Guerrieri and Iacoviello (2017), and Cuba-



Borda et al. (2019) do not encounter spurious many-to-one mappings, as they consider
MIT regime-switching models with otherwise linear policy functions.> However, Boehl
and Strobel (2024) report root-finding problems even in one-to-one policy functions due to
non-convergence of numerical algorithms. In such cases, the Lagrange Inversion Theorem
can also be beneficial. Likewise, although sufficiently accurate global solution methods
should preclude spurious many-to-one mappings when the actual policy function is one-to-
one, the Lagrange Inversion Theorem may provide a remedy when root-finding algorithms
fail to converge.

The literature has already documented several advantages of the inversion filter. Fair
and Taylor (1983), Guerrieri and Iacoviello (2017), Kollmann (2017), Cuba-Borda et al.
(2019), Atkinson et al. (2020), Huber (2022), and Fehrle and Huber (2023) emphasize
its numerical efficiency. Moreover, Fehrle and Huber (2023) show that, when the model
is linearized, second moments of the innovations can be estimated analytically.* Finally,
Cuba-Borda et al. (2019) highlight that the inversion filter does not require the introduc-
tion of measurement errors generally. In this paper, I further emphasize the advantages of
the filter’s likelihood differentiability. In particular, I show that this approach can substan-
tially improve accuracy in ML estimation and in sampling with a Random-Walk Metropolis-
Hastings algorithm. This enhancement is notable when compared to a benchmark boot-
strap particle filter, primarily because the filter allows for derivative-based optimization.’
That said, the goal of this study is not to compare different classes of nonlinear filters,
but to enhance the statistical efficiency of the inversion filter and thereby to broaden the
toolbox for nonlinear state-space estimation.

In early studies on inversion filters, endogenous states were not latent (Fair and Tay-
lor, 1983) or non-existent (Amisano and Tristani, 2011). Studies with latent endogenous
states set these endogenous states to the steady state (Guerrieri and Iacoviello, 2017; Koll-
mann, 2017; Atkinson et al., 2020; Huber, 2022; Fehrle and Huber, 2023; Boehl and Stro-
bel, 2024). Kollmann (2017) and Guerrieri and Iacoviello (2017) discard the first 10
and 20 per-period likelihood contributions, respectively. Cuba-Borda et al. (2019) con-

duct a Monte Carlo study, where the initial states are set to their true values. Fehrle and

3Holden (2023) and Boehl and Strobel (2024) emphasize that many-to-one mappings may arise when the
possibility of switching regimes is anticipated.

“Note that in the linear case and an initialization at the steady-state, the inversion filter is equivalent to a
steady-state Kalman filter.

>Accuracy in the Bayesian sampler is enhanced as the proposal distribution’s covariance matrix can be set
to the inverse of the negative Hessian at the posterior mode (Herbst and Schorfheide, 2015, Chapter 4).



Huber (2023) use the results from the inversion filter as an initial guess for a more time-
consuming estimation based on the exact likelihood. Huber (2022) shows how the exact
likelihood in linear state-space models can be reconstructed from the recursion that is con-
ditional on the initial states, thereby reducing computational time for the exact likelihood.

Lastly, it is worth noting that the Monte Carlo analyses of Cuba-Borda et al. (2019),
Atkinson et al. (2020), and Boehl and Strobel (2024) compare the inversion filter either to
the true parameter values or to other likelihood approximations. In contrast, as mentioned,
in this paper I compare the inversion filter directly to the exact likelihood, evaluating
how the distribution of the estimator derived from the inversion filter matches the true
estimator distribution. In this way, the paper contributes to the broader understanding of
the use of the inversion filter.

The remainder of the paper is organized as follows. The first part presents the method-
ological advancements, including the derivation of the conditional distribution of the en-
dogenous states and the corresponding likelihoods. The analytic derivation is followed by
a Monte Carlo study and a discussion that addresses, among other topics, how to handle
spurious many-to-one mappings. The second part presents the two applications: MBCA
and uncertainty shocks. Finally, the paper concludes. An appendix provides additional
results and information, particularly confirming the robustness of the analysis presented

here.

2 INVERSION FILTER

2.1 Analytical Framework

To make the use of the conditional distribution of the initial endogenous states for the like-
lihood function straightforward, the exposition begins with a model of purely exogenous
latent states, as applied, for example, by Amisano and Tristani (2011). In this setting,
both the exact likelihood and the likelihood conditional on the initial observations can be
obtained using the inversion filter. For models that also include endogenous states, the
presentation of the likelihood conditional on the initial endogenous states then becomes
straightforward. This likelihood corresponds to the benchmark inversion filter’s in the
recent literature.

I then present the paper’s main contribution. I first derive the distribution of the initial

endogenous states conditional on the initial observations using the change-of-variables



theorem. I then show how this distribution can be used to marginalize over the initial
endogenous states to obtain the likelihood conditional solely on the initial observations
again. As an alternative, I construct a likelihood that explicitly includes the probability
distribution of the initial endogenous states and the profile likelihood with respect to the
initial endogenous states.

Consider now the first case: a state-space model y, = f(z,), where y, is a set of observ-
ables and z, is a vector of purely exogenous latent states following a stationary Markov
process. The conditional transition density is given by p(z,.; | 2,) = p.(€,41) and the
stationary unconditional distribution by p,(z,). Both distributions are closed form. If
dim(z,) = dim(y,) and f is one-to-one and continuously differentiable (i.e., a diffeo-
morphism on the support of z,), then gz, is uniquely determined by y, = f(z,) and the
change-of-variables theorem yields the log-likelihood:
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For illustration, a least squares estimation of an observable g-order autoregressive process
is equivalent with a conditional ML estimation with T® = q.

Now consider the standard case, where the model includes an additional vector of
endogenous states x,, with observations given by y, = f(x,,z,) and dynamics x,,; =
g(x.,2,). Given x; and y,, the invertibility of f in z, implies 2, is uniquely determined—
for dim(y) = dim(z). Then, (x,,2,) — (X;41,%:41) is recursively determined: from (x,,2,),
the function g yields x,, ;; the observation y,,, then identifies 2, ;. Iterating this procedure
determines (x,,2,) fort =1,..., T, given x; and Y;.,. While the exact likelihood function
is unknown, as long as the unconditional, stationary distribution p,(x,) is unknown, the

likelihood function conditional on x, and the first T? observables read

T—1
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In general, x; is unobserved, and any misspecification of this initial condition biases the
likelihood. However, the bias diminishes gradually under certain conditions as t increases.
Thus, the literature on inverted filters typically discards the first few per-period likelihood
contributions, setting T? >> 1 (Kollmann, 2017; Guerrieri and Iacoviello, 2017).

While the problem of the unknown unconditional stationary distribution p,.(x,) stays
unsolved, the conditional density of x; given y; (p(x;|y;)) can be obtained by a change
of variables. Specifically, regarding y, as deterministic, inverting the system delivers z; =
fz_l( ¥1,X1). As long as the number of endogenous states does not exceed the number of
exogenous states (dim(x) < dim(z)), the conditional density of the initial state is well-

defined. Specifically, if we define the Jacobian

3fz_1(}’1:x1)

= Rdim(z) xdim(x)’
Jx,

J(x;) =

then the density can be expressed as

0y | y1) = pa(£7 (s x1)) 3/ det ()T (). @

In the exactly identified case (dim(x) = dim(z)), this reduces to the usual determinant
|detJ|. In overidentified cases (dim(x) < dim(z)), the factor v/det(JTJ) generalizes the
Jacobian to a rectangular mapping, giving the appropriate volume scaling of x; in z-space.
This is known as the Gram determinant.

From this conditional distribution of x, the likelihood, solely conditional on the first T°

observations, is

T—1
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Note that for standard DSGE models, where z, is solely first-order autoregressive, T® = 1
is sufficient.

Alternatively, if x; is treated as a parameter the likelihood reads

l @
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and the corresponding profile likelihood
ngb = zp(YTb+1:T | Y705 ©) = max L (Ypopq.p | Yoopos {x1,0}). )
X1

2.2 Monte Carlo analysis

In this subsection, I present the Monte Carlo analysis, which quantifies the improvements
from using the conditional distribution of the endogenous states for both state and param-
eter inference in a practical setting.

In line with the Monte Carlo study from Kollmann (2017), the setup is a real business

cycle model with distorted first-order conditions. The model reads in canonical form

a;:—: = exp(zy )0 - fnt ©)
1 = exp(z5,)BE, [(Cf“ )U (1 — e )UH) (1 5+ alt )] 7)
C 1—n, ki1

¥ = exp(z,, )kin, %, )
Ye=ti+c +8, 9
ko =i, +(1—8)k, (10)
& =71y exp(zg,), (11)
Zips1 = Pi%ic T Wi€i41,5 €1 ~ N(0,1), 1 €{A,B,G,N}, (12)

and the parameters {f3,0,n*, a,d,p;} = {0.99,2,0.3,0.37,0.014,0.95} as well as w; =
0.01 fori € {A,G,N} and 0.0025 for i = B. As standard in the DSGE literature, instead of
calibrating 6, I pin down hours worked in the steady state n*, which in turn determines
0 from eq. (6), evaluated at the model’s deterministic steady state. Note that the states
z;, follow univariate first order autoregressive processes and correspond to the exogenous
states 2, in the section above, while the state k, arises endogenously in line with x, in the
section above.

Although the primary goal is to improve non-linear filtering, I conduct the analyses us-
ing the linearized version of the model—both as the data-generating process and as the
econometric model. This is a common approach (e.g., Herbst and Schorfheide, 2015, Part
III; Farmer 2021,Fehrle et al. 2025) as it entails no loss of generality while offering two key
advantages. First, solving the linearized model is computationally efficient, which allows

us to use a large number of Monte Carlo replications and thereby reduce sampling variabil-



ity. Second, and more importantly, the exact likelihood function be evaluated analytically
only for the linear case by means of the Kalman filter. This provides a clean benchmark
for assessing filtering performance.

The Monte Carlo setup is as follows. I simulate the model N = 1024 times, each over
1200 periods, with the first 1000 periods serving as a burn-in phase. I then use the controls
{Y.}12%9,, = {¥e.coi,n 1129, as the observable variables, in line with y, in the section
above. This results in a total of ny, x T x N =4 x 200 x 1024 observations. The model is
calibrated at a quarterly frequency, so the effective time span of the retained data corre-
sponds to 50 years—comparable to the data availability in many developed and emerging

economies.

2.2.1 State estimation

In a first step, I investigate the impact of different initialization methods on the estimates
of the latent states, assuming all parameters are known. Figure 1 plots the RMSE of these
estimates. The yellow line corresponds to the inverted filter initialized at the unconditional
mean of the endogenous state, Ek, (Ex;). The black dashed line shows the inverted filter
initialized at the point estimate of k; given Y; ((Eylxl) eq. (2)), while the red line repre-
sents the inverted filter initialized with the full distribution of k; conditional on Y; (£,
eq. (3))—effectively implementing smoothing conditional on Y;. The blue dashed line
reflects the maximum likelihood estimate of k;, obtained from the likelihood conditional
onY; (,Sfpl, eq. (4)). The brown line shows the estimates from the Kalman filter, and the
green line those from the Kalman smoother. The gray lines—loosely, normally, and densely
dotted—represent estimates using an approximation of the full (unconditional) likelihood
from bootstrap particle filters with 102, 10%, and 10* particles, respectively. Finally, the
dashed-dotted line indicates the RMSE when using the unconditional mean of the state as
the estimate for all t.

It is worth noting that, since we observe y,,c,,i,, we can infer g, exactly from the lin-
earized version of equation (9), and consequently also recover z;, from the linearized
version of equation (11). In the same manner, using y,,c,,n, and equation (6), we can
exactly infer zy,. As a result, all filters and smoothers estimate the states z, in Panel (c)
and zy, in Panel (d) up to numerical precision correctly.

Regarding the endogenous state k, in Panel (e), the filter that initializes k, at the uncon-

ditional mean Ek, results in an RMSE close to 10 percentage points—the unconditional
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Figure 1: State estimation
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standard deviation of k,. Using the first observation to estimate the initial k, (eq. (2))
reduces the RMSE by 25%, as indicated by the dotted line. Both smoothing with the like-
lihood conditional on Y; (£!) and using the profile likelihood further reduce the RMSE,
bringing it nearly 40% lower than the naive initialization at Ek. The conditional likelihood
approach yields k, estimates nearly as accurate as those from the Kalman filter, which re-
sults in an RMSE slightly more than 40% lower than the naive initialization (k; = Ek). The
Kalman smoother outperforms all other estimators, with an RMSE that is 50% lower than
the naive initialization. Hence, using the conditional likelihood from the inverted filter
brings the RMSE for k; down to 80% of the best estimator. The accuracy of the particle
filter with a small number of particles (10?) is similar to that obtained by using the first
observation, Y;, to estimate the endogenous state (eq. (1)). Increasing the number of par-
ticles by a factor of 10 improves accuracy, delivering an RMSE similar to that of smoothing
with the conditional likelihood on Y; and maximizing k; given this likelihood. Increasing
the amount of particles by another factor of 10 further closes the gap to the analytical filter
by more than half.°

The patterns of RMSE of z,, and 2, in Panel (a) and (d) are similar to the estimates for
k.. Notably, initializing the endogenous state at its mean results in a larger RMSE for the

estimation of z,; compared to a naive estimation using the unconditional mean Ez,,.

2.2.2 Full estimation

Next, I perform a Bayesian estimation with respect to the parameter vector

— *
@ - {O-yn 9pAJpN:pGJpB)wA)wNwa)wB})

assuming flat, uninformative priors, as specified in Table 1. The remaining parameters are
fixed at their true values.

Given the model, the observables, and the known parameters, this analysis examines
how different sources of uncertainty affect the estimation of states and parameters. First,
since y is known, we can still infer the state z;, with certainty. Consequently, the dif-
ferences between the exact, unconditioned likelihood estimates and the conditional like-
lihood estimates for p; and w, are analogous to the difference between estimating an

first-order autoregressive process using the exact likelihood versus least squares, where

®Note that smoothing with particle filters is a non-trivial task. As a result, states are almost always estimated
using filtering, not smoothing.
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Table 1: Prior distribution

Parameter Lower Bound Upper Bound Prior Distribution

n* 0.1 0.5 2%(0.1, 0.5)

o 0.01 10 2%(0.01, 10)
Pa 0 0.999 (0, 0.999)
N 0 0.999 (0, 0.999)
Oo 0 0.999 (0, 0.999)

05 0 0.999 (0, 0.999)
w, 0.001 0.1 2%(0.001, 0.1)
wy 0.001 0.1 2%(0.001, 0.1)
we 0.001 0.1 2(0.001, 0.1)
wg 0.00025 0.025 2/(0.00025, 0.025)

the latter is the standard in applied times series analysis. Second, because 6 depends on
the estimates of the steady state n*, now the estimates of zy and the related parameters py
and wy are influenced by the uncertainty in n*. Third, since a is known, the estimates of
z, and the related parameters p, and w, are affected solely by the uncertainty regarding
the initial endogenous state k, via equation (8). Lastly, the estimates of z; and the related

parameters pp and wy as well as o and n* depend on the entire uncertainty.

Posterior’s mode—constraint maximum likelihood First, I compare the posterior’s
mode resulting from the different conditional likelihoods with the unconditional one.
Since the priors are uniformly distributed, the parameter values at the posterior’s mode
coincide with their (constrained) maximum likelihood estimates. To avoid potential issues
with local maxima, I perform global maximization using 200 stage-one points and 1,000
trial points. Additionally, I conduct the analysis using a particle filter with 10° Particles ini-
tialized with draws from the stationary distribution of the states. The maximization of the
particle-filter likelihood uses a particle swarm filter using 100 particles in each generation.

Table 2 presents the RMSE of the ML estimates of the parameters and the resulting initial
states to the exact ML estimates. The RMSE of the parameters is relative to the prior range.
Again, " indicate the results from the likelihood conditioned on the first observations of
Y; (eq. (3)) and ffpl is the profile likelihood (5)). The likelihood conditioned on k; = Ek
is represented by £~ while £'%*=E* and £2%*=E~ indicate estimates from the same
initialization, however, the first 10 and 20 periods are burned (eq. 1, T® € {1,10,20}).

Additionally, I report estimates using an approximation of the full (unconditional) likeli-
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hood from a bootstrap particle filter with 10®particles. One, two, and three upper asterisks
indicate p-values lower than 0.05, 0.01, and 0.001 for the null hypothesis that the estimate
equals that from 2! and lower asterisks for the null hypothesis that the estimate equals
that from £}

As part of the main contribution of this study, the estimates solely conditional on the
first observations of Y, (£, ffpl) are significant superior than the estimates from . *=5*
or statistically not different. The latter holds for p, and by construction for all estimations
regarding g (pg, wg, %61). As the RMSEs regarding g are equivalent to RMSEs of the
common approach to estimate autoregressive processes with least squares instead of the
exact likelihood, we can consider the RMSEs regarding g as an acceptable magnitude.
From this point of view in turn, we can consider the improvements due to conditioning
on Y; regarding the reaming shock parameters as high, as they bring down the RMSEs
from up to more than twice as high as the g-estimates to be partly even lower than of the
g-estimates.

Of additional interest is that, contrary to the intuition posed by the literature, the loss
of information due to the burned periods is more decisive than the gain due to only using
more exact states. Except of p,, where the burn-in gives indeed slightly more accurate
estimates, the RMSE is up to four times larger with a burn-in compared to the likelihood
conditional on the endogenous state but without a burn-in. Considering the estimates ob-
tained using the particle filter, I find that it outperforms the method based on x; = Ex for
most z,- and k-related estimates, but performs worse for the remaining variables. More im-
portantly, however, the particle filter’s estimates have a higher RMSE than the likelihoods
conditioning on the initial observation of Y,—namely, £' and ,%pl. Lastly, the estimates
from the likelihood conditioned solely on the first observations £ are significantly supe-
rior than the estimates from profile likelihood zpl or statistically not different. However,
the differences are minor.

Table 3 represents the one and four-period Root Mean Squared Forecast Error (RMSFE)
resulting from forecasts of the estimates from conditional likelihoods to the forecasts from
the estimates from the exact likelihood. Again £' delivers significantly most accurate
results, followed by ,‘fpl. Further, £*=E* more precise forecasts than estimates from like-
lihoods with a burn-in phase (£ 1%¥=Ex £20.x=Ex) and all conditional filters achieve higher
accuracy than the particle filter.

Given that the exercise analyzes the evaluation of both the posterior mode and the

maximum likelihood estimator, I repeat these exercises for shorter (T = 100) and longer
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Table 2: RMSEs of ML estimates from conditional likelihoods to true ML esti-
mates (parameters in % of prior range)

gl gpl gl,xz]Ex zlo,leEx zzo,x:Ex 103 Particles

n* 230 212 2.68™  3.52™* 4.08™ 10.227

o 1095 1029 13.78" 14957 16.00° 52.84""
pa 080 0987 2017 1977 1927 146"
py 074 070 071 1.04%  131°F 1217
p; 085 085 085 102 118" 092"
pp 111 117 113%™ 1267 142 374
w, 002 003™ 006 0137 018 015"
wy 017 016 019%™ 0297 033" 066"
w; 004 004 004 012 0177 015

wp 9.62 899  11.31% 12.40™* 14.427 5551
X, 420 417 9297 920" 9297 448

zq 155 154  3.44™ 3447 344 166
zy; 010 0.09  0.13* 0.17°* 018" 039
zg; 0.00 0.00  0.00 0.00%  0.00°  0.00"

7, 104 099 124 1297 135" 3,927

Notes: RMSE of the ML estimates from estimates to the true likelihood from 1032 samples, relative to the
prior range in %. Likelihood specifications are as follows: %! — inverse likelihood conditioned solely on
Y15 2’; — maximization includes the initial endogenous state; ¥1*=E* _ initial endogenous state set to the

unconditional first moment; £ 10%=Ex and ¢20-X=Ex _ same, but with the first 10 and 20 periods burned,
respectively; 10° Particles — 10° particles used, drawn from the states’ stationary distribution. Significance
levels: *, **, ** denote p-values of 0.05, 0.01, and 0.001 for the null hypothesis that the estimate equals
that from ¥1; , .., ... indicate the same significance levels for the null that the estimate equals that from
.54} . Global maximization used 200 stage-one points and 1,000 trial points (default), particle filter estimates
are done via swarm particles optimization (100 particles—default).
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Table 3: RMSFE of ML estimates from conditional likelihoods to true ML esti-
mates (in percentage points of the steady state)

21 gpl gl,XZIEx le,XZEX gZO,X:EX 103 Particles

Jra1 0.04, 0057 0.07 0.077% 0077  0.10%

brey 004, 004" 00577 0057 00677 0127
{1 019, 022 025" 027 029" 062"

fir,s 004, 0.05% 0.05% 0.06™ 0077  0.14"
Jrea 014 016" 023" 023" 025"  0.33%

skksk skksk ok kekok
by 013, 014" 017;7 01877 01977 03877
{1y 0.65, 071" 0.84 0927 0977  2.00*

fires 015, 016" 0187 0207 0227  0.45"

Notes: One and four periods RMSFE of the ML estimated models to estimates from the true likelihood es-
timated model from 1024 samples, in percentage points of the respective variable’s steady state. Likelihood
specifications are as follows: £ — inverse likelihood conditioned solely on y;; ,Zpl —maximization includes the

initial endogenous state; % *=EX _ initial endogenous state set to the unconditional first moment; & 10*=Ex
and £20*=Ex _ same, but with the first 10 and 20 periods burned, respectively; 10° Particles — 10% particles
used, drawn from the states’ stationary distribution. Significance levels: *, **, *** denote p-values of 0.05,
0.01, and 0.001 for the null hypothesis that the estimate equals that from £!; ,, ,,, ... indicate the same
significance levels for the null that the estimate equals that from 5fp1.

(T = 400) samples.” The results of the estimates are presented in Appendix Tables 11 and
12, and the forecasts in Appendix Tables 13 and 14. The findings largely replicate those dis-
cussed. Notably, in the short sample, the particle filter provides statistically significantly
better estimates for p; and achieves numerically superior, albeit not statistically signifi-
cant, results for k; and z,. In all other cases—including the forecasts—estimates based on
conditioning on the first observation statistically significantly outperform all other estima-
tions.

Finally, Table 4 compare the time needed for one maximization. Except for the particle
filter, it turns out that the Kalman filter is most time consuming. The Kalman filter esti-
mates, the benchmark, need around 4 times as long as the second most time consuming
evaluation— £!. The maximization using £! needs around twice as long as ,‘Zpl which
needs around 30% longer than the likelihood specifications where the initial endogenous
state set to the unconditional first moment. However, the computation is executed on
single cores and the evaluation %! is parallelizable, which can decrease the time needed
significantly. The particle filter maximization takes to longest time, partly twice as long

as the Kalman filter maximizations. While the particle filter is also parallelizable, the ini-

"The T = 100 sample consists of the first 100 periods of the T = 200 sample, which in turn corresponds to
the first 200 periods of the T = 400 sample.
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Table 4: Average maximization time per sample

Kalman %! ,Sfpl pLx=Ex  plOx=Ex  p20.x=Ex 103 particles

T=100 02:02 00:28 00:17 00:13 00:14 00:14 2:37

T=200 03:13 00:41 00:22 00:17 00:18 00:18 5:30

T=400 04:54 01:02 00:29 00:24 00:24 00:25 11:37

Notes: Time on one core of an AMD Epyc 7313 (Milan) (3.0GHz). Format: MM:SS. Global maximization used 200 stage-one

points and 1,000 trial points (default) on 1024 samples, particle filter estimates are done via swarm particles optimization
(100 particles—default). Likelihood specifications are as follows: £ — inverse likelihood conditioned solely on y;; ﬁf’pl -

maximization includes the initial endogenous state; % »*=EX _ initial endogenous state set to the unconditional first moment;
p10X=Ex and @20X=EX _ same, but with the first 10 and 20 periods burned, respectively; 10% Particles — 10% particles used,
drawn from the states’ stationary distribution.

tialization of k, was directly drawn from the stationary Gaussian distribution, which in

non-linear cases requires a time-consuming burn-in phase.

Posterior distribution I continue with the evaluation of the posterior’s mean, quartiles,
as well as the first and the last decile from the various likelihoods. I consider the differ-
ences between the posterior from the analytically evaluated exact likelihood and from the
expected likelihood conditioned solely on Y; (£, eq. (3)), from a specification which
includes drawings from k; using the likelihood conditioned solely on Y; (£}, eq. (4)),
from the likelihood conditioned on k; = Ek (£*=5%, eq. (1)), and an approximation of
the exact likelihood using 10° particles.®

To evaluate the posterior, I use the last 100,000 draws out of 150,000 from a bench-
mark Random Walk Metropolis Hastings sampler (Herbst and Schorfheide, 2015, Chapter
4) deploying a multivariate Gaussian proposal distribution. For differentiable kernels, the
corresponding unscaled covariance equals the negative of the inverse Hessian at the ker-
nel’s mode, which also correspond to the initial draw. In the other case, for the particle
filter, I use the covariance from the first 10,000 draws, which are sampled using the prior’s
variance and the initial draw equal the prior’s mean.’ I scale the proposal distribution by
0.252 during the burn-in phase and re-scale after the burn-in once to approach an accep-
tance of rate of 33% as a rate between 20% and 40% is considered to be optimal (Herbst
and Schorfheide, 2015, Chapter 4). Figure 2 display the distribution of the acceptance
rates of the samplings from the benchmark kernel—the analytical exact likelihood—and

shows a successful scaling given the goal. I present here only results from simulations

8The results from the likelihood conditioned on k; = Ek and a burn-in phase of the maximum likelihood
analysis indicates that burning brings no advancement. I evaluated this and it holds also for the whole
posterior, which is why I omit to present the results here for reasons of clarity and comprehensibility.

°I got better results using the prior’s mean than using the mode evaluated with a derivative free optimizer.
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Figure 2: Acceptance rate, sampler with Kalman filter
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Table 5: Excluded posterior samples

Kalman %! </ Lb¥=Ex 103 Particles N,,./N

1.46% 2.34% 10.55% 2.64%  2.05% 864/1024

Notes:% of samples are discarded due to non-optimal acceptance rate. These samples are than
excluded across all likelihood specifications. N, number of overall successful posterior evaluations.

Likelihood specifications: %1 — inverse likelihood conditioned solely on Y;; ,‘Zfl — posterior draws

include the initial endogenous states; % »*=E* _ initial endogenous state set to its unconditional first
moment, 10% Particles — 10% particles used, drawn from the states’ stationary distribution.

where the acceptance rate of the draws lie within the range of 20% and 40%. Discarded
simulation are discarded in all likelihood specifications and in the Appendix A.1 the results
from all draws.

Figure 5 shows the exclusion results. The highest rate of unsatisfactory acceptances
occurs under the specification that draws includes k; using the likelihood conditioned
only on Y; (zfl), with a failure rate of nearly 11%. All other specifications fail less than
3% of the time, resulting in a total of 864 successful samples across all specifications,
corresponding to an overall success rate of 84.3%.

Figure 3 presents the results for n* and o*. For n*, the expected likelihood conditioned
solely on Y; (1) performs best, followed closely by the specification that includes draw-
ings from k; using the likelihood conditioned on Y; (.EZfl). The likelihood conditioned on
k, = Ek and Y; yields values approximately 10% higher than the best-performing specifica-
tion. The approximation based on 10° particles performs nearly twice as poorly as the best

approach, although the difference is still smaller than in the maximum likelihood estima-
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tion. For o*, the expected likelihood conditioned solely on Y; again delivers the most accu-
rate results, while the specifications using drawings from k; and conditioning on k; = Ek
show similar performance across the evaluated measures. The particle-based approxi-
mation with 10% particles performs noticeably worse than the best-performing method,
though the magnitude of the difference is smaller than that observed for n*.

Figure 4 presents the results for the autoregressive parameters. For p,, the expected
likelihood conditioned solely on Y; and the specification that includes drawings from k;
perform best, with the particle-based approximation using 10 particles trailing behind by
more than 25%. There is a substantial gap to the specification conditioned on k; = Ek,
which performs three to six times worse. For py and pg, the conditional filters yield similar
RMSEs, with the particle-based approach achieving slightly lower errors—approximately
one third smaller. However, all methods result in relatively small errors overall. For pg,
the expected likelihood conditioned solely on Y;, the specification using drawings from k;,
and the particle-based approximation perform similarly and outperform the method based
on conditioning on k; = Ek, whose RMSE is about 10% larger.

The RMSE of the posteriors’ of the innovations’ standard deviations is reported in Fig-
ure 5. The ordering of results for w, mirrors that of p,, although the differences across
specifications are smaller. Interestingly, for w,, the particle-based approximation with 103
particles performs significantly worse, with an RMSE roughly 50% higher than the best-
performing specification—the specifications with likelihoods conditioned on Y, closely
followed by the specification conditioned on Ek. For wg, the results resemble those of
Pg, but with a smaller differences across specifications; the approach using drawings from
k, performs slightly worse for larger quantiles. For wj, the particle-based approximation
underperforms substantially, yielding RMSE values about 100% higher than those from
the conditional specifications, which all perform similarly.

Figure 10-12 in the appendix reports results when no samples are discarded. In this
setting, the particle-based approximation using 10° particles performs worse in all cases
except for p,, where it still yields noticeably poorer results compared to the one presented
here. Moreover, for both o and wjy, the specification drawing from k; also exhibits a
decline in performance, becoming worse relative to the conditional likelihood alternatives.

Other differences are not substantial enough to warrant discussion.
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Figure 3: Posterior errors of estimated steady state and behavioral parameters (% of prior range)
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Notes: RMSE of the posterior estimates to the true posterior kernel from 864 samples, relative to the prior range in % (T = 200).
The likelihood specifications are as follows: £! — inverse likelihood conditioned solely on y;; ,Sf’fl - posterior draws include the initial
endogenous states; ¥ >*=EX _ initial endogenous state set to its unconditional first moment, 10° Particles — 10° particles used, drawn
from the states’ stationary distribution. A Random-Walk Metropolis-Hastings sampler is used with 150,000 draws, where the first 1/3
of the draws are discarded as burn-in.

Table 6: Sampling time per sample

Kalman %! ,%’fl L =Ex 102 Particles

13:34 03:33 01:55 01:46 93:04

Notes: Time on one core of an AMD Epyc 7313 (Milan) (3.0GHz). Format:
MM:SS. Sampling time excludes the estimation of the kernel’s mode. The like-
lihood specifications are as follows: £! —inverse likelihood conditioned solely
on yq; 2}1 — posterior draws include the initial endogenous states; £ 1*=Ex _

initial endogenous state set to its unconditional first moment, 10° Particles —
10° particles used, drawn from the states’ stationary distribution.
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Figure 4: Posterior errors of estimated autoregressive coefficients (% of prior range)
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Notes: RMSE of the posterior estimates to the true posterior kernel from 864 samples, relative to the prior range in % (T = 200).
The likelihood specifications are as follows: %1 — inverse likelihood conditioned solely on y;; &£ fl - posterior draws include the initial

endogenous states; & >*=EX _ initial endogenous state set to its unconditional first moment, 10° Particles — 10° particles used, drawn
from the states’ stationary distribution. A Random-Walk Metropolis-Hastings sampler is used with 150,000 draws, where the first 1/3
of the draws are discarded as burn-in.
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Figure 5: Posterior errors of estimated innovation’s standard deviation (% of prior range)
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The likelihood specifications are as follows: %! — inverse likelihood conditioned solely on y;; _%’fl - posterior draws include the initial

endogenous states; % »*=EX _ initial endogenous state set to its unconditional first moment, 10° Particles — 10° particles used, drawn
from the states’ stationary distribution. A Random-Walk Metropolis-Hastings sampler is used with 150,000 draws, where the first 1/3
of the draws are discarded as burn-in.
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2.3 Discussion

In general, the inversion filter has two major limitations: it requires a one-to-one (in-
vertible) policy function, and because of this, the number of observables must equal the
number of exogenous states. The initialization proposed here introduces a third condi-
tion: the number of endogenous states must not exceed the number of exogenous states.
In the following, I will discuss these limitations with reference to economic applications
and propose possible remedies.

First, regarding the one-to-one policy function that guarantees the unique mapping from
controls to states: under standard conditions—such as strict concavity of the objective with
respect to the controls and that the feasible set defined by the constraints is convex—and
given that the number of observables equals the number of exogenous states, the policy
function is one-to-one. Hence, the inversion filter can be applied to a wide range of prob-
lems; however, one should exercise due caution when dealing with non-standard problems.
Holden (2023), for example, discuss under which conditions many-to-one mappings can
arise due to a occasionally-binding zero lower bound on the policy rates. Cuba-Borda et al.
(2019) propose that for many-to-one policy functions, one can consider all roots and then
sum over all possible solutions in the likelihood. While this approach can quickly lead to
numerical overflow, it remains feasible for occasional many-to-one mappings.

A common problem is spurious roots. Spurious roots can arise when approximating the
policy function, particularly in higher-order local expansions. For example, when approx-
imating the policy function of a model with n exogenous states using an m-th order Taylor
series, the inversion of the local expansion may yield up to m" candidate roots. If the pol-
icy function is one-to-one, only one of these roots corresponds to the true solution of the
original system; the others are spurious. In such cases, the Lagrange Inversion Theorem
provides a useful tool.

The Lagrange Inversion Theorem gives a formal method for locally inverting an analytic
function. Specifically, for a function defined as y = f(z), the theorem allows the construc-
tion of a Taylor series for the inverse function z = f ~!(y) around a point where f is locally
invertible, guaranteeing the correct identification of the true root in its neighborhood.

An additional check for the true root can be obtained from the residuals of the static
functions of the model that involve non-observed controls. For the true root, these resid-
uals are close to zero because all equilibrium conditions are satisfied, whereas spurious

roots produce non-negligible residuals.
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Regarding the second requirement—that the number of observables equals the number
of exogenous states—we can either introduce measurement errors to increase the number
of observables and integrate over these errors, or, if there are more exogenous states than
observables, integrate over the additional exogenous states as we do for the initial en-
dogenous states. Both approaches are feasible, as the distributions of measurement errors
and exogenous states are given. Note that when Monte Carlo integration techniques are
employed, the former approach resembles a particle filter, with the inversion acting as an
importance sampler.!® However, further research is needed to explore these possibilities.

When the number of endogenous states exceeds the number of exogenous states, the
Gram matrix J 'J is necessarily rank-deficient, precluding its use for volume scaling. How-
ever, this specific scenario is rare in applied macroeconomics. Consequently, this limitation

does not affect the practical applicability of the inversion filter for a majority of models.

3 APPLICATIONS

3.1 Monetary Business Cycle Accounting for the COVID-19 Recession and the
post-pandemic inflation in the EMU and US

As a first application, I conduct MBCA, following the approach of Sustek (2011), to ana-
lyze the COVID-19 recession and the subsequent post-pandemic inflation in both the EMU
and the United States. MBCA extends the standard Business Cycle Accounting framework
introduced by Chari et al. (2007) by incorporating inflation, 7t,, into the analysis.
Business Cycle Accounting attributes deviations from a frictionless benchmark model to
a set of so-called wedges, which serve as reduced-form distortions of structural frictions
and shocks. The real distortions in MBCA correspond to those derived from the distorted
first-order conditions presented in the Monte Carlo study (Equations (6)-(11)), with the
exception of the Euler equation for capital. Here, the wedge in the capital Euler equation
is equivalent to an investment tax, exp(z;,)—1. Accordingly, the Euler equation for capital,

takes the form:

exp(z;,) = BE, [(C:l )U (1 —en )0(1_9) ((1 — &) exp(2;,41) + a2t )] :

t 1-— n; kt+1

OFehrle et al. (2025) approximate the inverse function as importance sampler in a bootstrap filter applica-
tion. See additionally also the discussion of Herbst and Schorfheide (2015, Chapter 8) on the condition-
ally optimal importance distribution.
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In addition to the real distortions, MBCA introduces a wedge in the Euler equation for
bonds zz,. Furthermore, the central bank is assumed to follow a distorted Taylor rule,
capturing monetary policy deviations from the monetary policy rule. The distorted bond

Euler equation and Taylor rule read

i\ (1=1,., 0D ¢
exp(zp,) = BE, |:( tcﬂ) ( Hl) : exp(2p.41) |»

¢ 1—n, T4
T Ve oy \ P
re=r 1+ 7+ }; eXp(ZRt)s

where r, denotes the nominal interest rate, r*, n*, and y* represent the central bank’s
steady-state or target values for the nominal rate, inflation, and output, respectively, and
Zg, captures deviations from the central bank’s rule-based policy. These two equations
account for the nominal (monetary) distortions in the model. Lastly, to ensure consistency
in per capita terms, the household’s time preference rate is adjusted for population growth
€pop> yielding an effective discount factor of B’ = B/g,,,-

The specification of the evolution of the distortions—the wedges—is more elaborate
than for the g;, in the Monte Carlo experiment. First, each wedge consists of a long-run
(steady-state) component and a time-varying component: z;, = zjs +2;,. Second, the time-
varying component Z;, follows a first-order vectorautoregressive process, implying that the

distortions interact over time.

3.1.1 Calibration

Table 7 summarizes the parameter values used for the EMU and US economies. The cal-
ibration for the US follows Sustek (201 1), with one notable exception: I increase the
effective discount factor 8’ from 0.99 to 0.995 to better reflect the low interest rate envi-
ronment during the 2010s. Growth rates, output shares, and the long-run average working
time are based on my own calculations.

For the EMU, I depart further from Sustek (2011) by adjusting two key parameters: the
capital elasticity of output and the depreciation rate are set to a = 0.376 and 6 = 0.0117
to align with the empirical estimates reported by ECB (2023) and ECB (2006), respectively.
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Table 7: Calibration

Parameter EMU usS
Capital elast. a 0.376 0.35
Capital depr. rate 6 0.0117 0.0118
TR infl. target (p.a.) «* 2% 2%
TR infl. elast. ¥, 1.5 1.5
TR cycle elast. v, 0.125 0.125
Time preference 3 0.995 0.995
Risk aversion o 1 1
St.st. work n* 0.125 0.151
St.st. infl. 7% 0.125 0.151
Population growth g,,, 1.001 1.002
Consumpt. growth g, 1.007 1.005
Invest. growth g; 1.008 1.006
Avg. consumpt. share c/y 0.55 0.66
Avg. invest. share i/y 0.22 0.18

Notes: External determined parameters and long-run properties.
Remaining parameters are determined endogenously by the model
or via ML estimation.

3.1.2 Implementation

To align the data with the model, I largely follow Fehrle and Huber (2023). First, I ac-
count for differing growth rates among the observables and adjust the model accordingly
to ensure internal consistency. The resulting system of equations in stationary variables
is presented in Appendix A.2.1. Second, I determine the long-run wedge components en-
dogenously using steady-state relationships and a calibration exercise based on the long-
run shares of consumption and investment in output. The parameters of the mean-zero
autoregressive process are estimated via ML estimation. Following Sustek (2011), I use
output, private consumption, gross fixed investment, hours worked, and the inflation rate
as observables. Note that with these observables, the variable g, captures all expenditures
not classified as gross fixed investment or private consumption. As a result, it represents a
total residual demand wedge rather than government consumption specifically. The EMU-
19 countries (excluding Croatia and Bulgaria) represent the EMU, and Appendix A.2.2 lists
the data sources for both the EMU-19 and US data.

Regarding the model solution, I employ a weighted residual method via collocation, as
described in Heer and Maul3ner (2024, Chapter 5) to approximate the policy functions for
labor and inflation. Specifically, I use Chebyshev polynomials on a Smolyak sparse grid
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of second degree, resulting in a 2 x 113 polynomial series. To approximate the agent’s
expectations, I implement the CUT-4 cubature rule from Adurthi et al. (2018).

I estimate the autoregressive process with a model solution over a grid spanning 10% of
the deterministic steady-state capital stock and 1.5 times the unconditional standard de-
viation of the exogenous states driven from the the autoregressive process. It is important
to note that the states of efficiency z,,, labor wedge zy,, residual wedge z;,, and monetary
wedge zz, can be measured independently of the model’s solution and thus are measured
independent of the state-space domain. The remaining wedges z;, and 2z, are recovered
each period using a root-finding algorithm. The Jacobian of the mapping from innovations
to the observations is derived analytically from the polynomial series.

I choose a likelihood that is conditioned solely on the initial observations—%?'. To ap-
proximate the integral over the initial endogenous state, I employ Gauss-Hermite quadra-
ture nodes derived from the linear approximation of the endogenous state. The corre-
sponding quadrature weights are obtained from the likelihood conditional on each node-
specific endogenous state. The Jacobian required for transforming exogenous to endoge-
nous initial states is obtained via numerical differentiation.

Afterward, I adjust the grid in such way that the extrema of the realized states over
the whole sample for the EMU and over the COVID-19 period for the US align with the
extrema of the state space. This ensures that the solution is accurately computed during
the pandemic period.

Figure 6 plots the Euler residuals at three different solutions: (i) the states measured
during likelihood evaluation using the grid applied in that evaluation (dashed line), (ii)
the final measured states using the grid employed for the final model solution, and (iii)
the final measured states using a first-order perturbation around the deterministic steady
state (dotted).

The figure illustrates that, in normal times in the EMU, i.e., for most of the sample
period, the solution used for the likelihood evaluation exhibits greater accuracy than the
final solution. However, during the peak of the COVID-19 recession, the accuracy of the
likelihood-based solution deteriorates, though it still outperforms the average accuracy of
the linear solution by half an order of magnitude, and remains over an order of magnitude
more accurate than the linear solution during this period. For the US, the model solutions
used for the likelihood evaluation outperform the linear solution even more significantly.
Resolving the model on the adjusted grid leads to additional improvements in accuracy

during the COVID-19 period, resulting in a several orders of magnitude higher accuracy
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Figure 6: Euler residuals
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Notes: absolute Euler residuals in logq, scale from capital and bond Euler equations. Linear: Perturbation at deterministic steady
state.

than the linear perturbation around the deterministic steady state during the COVID-19
recession.

Finally, I assess the influence of each wedge over the period under consideration by
calculating the forecast error of the full model and comparing it to versions of the model
where all wedges, except one at a time, are held fixed at their steady-state values, while
allowing the underlying states to evolve. This approach isolates the impact of individual

wedges while preserving the agents’ expectations about the wedge’s fluctuations.

3.1.3 Results

Figure 7 presents the results of the exercise by plotting the forecast errors of the full model
alongside model versions in which all wedges, except one, are held fixed at their steady-
state values over the period 2020 — 2024. Horizontally, the left-hand panels display results
for the EMU, while the right-hand panels correspond to the US. Vertically, the upper panels
focus on the business cycle, measured by output y,, and the lower panels on inflation, r,.

In both economies, the labor wedge accounts excessively for the COVID-19 recession,
while the investment wedge exhibits a strongly countercyclical behavior. The efficiency
wedge contributes partially to the recession in the EMU but appears neutral or rather
countercyclical in the US. The impact of the residual demand wedge is minor in both
economies. According to the classical dichotomy, the bond and monetary wedges do not
affect real variables in the model.

The labor wedge also exerts the greatest inflationary pressure on both economies during
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the peak of the COVID-19 pandemic. In the EMU, the investment and efficiency wedges
additionally act inflationary during this phase, whereas their influence is minor in the US.
The residual demand wedge similarly has only a minor impact in both regions during this
period.

During the pandemic, the bond and monetary wedges exert strong deflationary ef-
fects, particularly in the EMU, where deflationary tendencies dominate. As the economies
move through and beyond the recovery phase, inflationary pressure from real economy
wedges diminishes, while that from nominal wedges increases, especially from the mone-
tary wedge. The monetary wedge alone accounts excessively for the post-pandemic infla-
tion surge in both economies. Notably, the investment wedge also contributes significantly
to the inflation peak in the US.

Table 8 presents the A-statistics (Fehrle and Huber, 2023) for output y, and inflation 7,.
These statistics measure the relative cumulative contribution of each individual wedge to
the realized fluctuations, where here fluctuations are continued to be quantified as forecast
errors.

The results largely corroborate the previous illustrated results. In the EMU, the la-
bor wedge contributes most significantly to the business cycle, followed by the efficiency
wedge, while the investment wedge acts strongly countercyclically. In the US, the labor
wedge alone accounts for the bulk of the cycle, with the efficiency wedge playing a coun-
tercyclical role.

With respect to inflation, in the EMU the labor and efficiency wedges—both real wedges—
are the main contributors, followed by the monetary wedge. In the US, the labor, invest-
ment, and monetary wedges contribute similarly to inflation, whereas the efficiency wedge

exhibits a deflationary effect.

3.2 Uncertainty shocks and the Great Moderation

Here, I build on the stochastic general equilibrium model developed by Basu and Bundick
(2017). This model produces sizable comoving fluctuations induced by uncertainty shocks
and is therefore well suited to analyze their macroeconomic effects.

3.2.1 Framework

The model features optimizing households and firms, and a central bank that follows a

Taylor-type monetary policy rule to stabilize inflation and offset adverse demand fluc-
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Figure 7: Monetary Business Cycle Accounting
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Table 8: MBCA A-statistics

BCA (y.)

Zae 2Nt 26t Zr¢ Zp¢ ZRe

EMU 1.26 1.52 -0.04 -1.89 0.00 0.00
us -1.86 3.27 -0.84 0.23 0.00 0.00

MBCA (7,)

Zp¢ 2Nt 26t 0 Zp¢ ZRe
EMU 1.14 1.48 -0.04 0.20 -2.15 0.75
UsS -0.35 0.65 -0.25 0.57 0.30 0.54

Notes: A-statistics report the accumulated forecast error induced by a single
wedge z;, in relation to the realized accumulated forecast error.
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tuations. Nominal rigidities follow the quadratic price adjustment cost framework of
Rotemberg (1982). The baseline model includes two exogenous sources of variation: (i)
household discount rate shocks and (ii) technology shocks. Additionally, the discount rate
shock’s innovations have a time-varying second moment, the uncertainty shock.

Households are modeled with Epstein-Zin recursive preferences, allowing the separa-
tion of risk aversion from the intertemporal elasticity of substitution. Additional to price
adjustment costs, firms face Jermann (1998) capital adjustment costs. However, firms can
choose their capital utilization in addition to the capital and labor input.

I introduce a residual demand shock, representing the combined effects of government
consumption and net exports, to capture additional variation in aggregate demand be-
yond domestic private-sector behavior. Furthermore, I specify all stochastic processes log-
normal distributed rather than, as Basu and Bundick (2017), normal, avoiding negative
states. Finally, the output gap in the Taylor rule is measured relative to the determinis-
tic trend rather than to previous output, aligning with the model’s balanced-growth-path

assumption.

3.2.2 Estimation

I estimate the same parameters as those used for impulse response function matching of
Basu and Bundick (2017). Specifically, I estimate all shock process parameters, namely the
(unnormalized) standard deviations of the innovations o; and the first-order autoregres-
sive coefficients p;, with i = G for residual demand shocks, i = Z for technology shocks,
i = A for discount rate shocks, and i = v for shocks to the standard deviation of the dis-
count rate innovations. In addition, I estimate the elasticity of capital adjustment costs,
Pr-

Column two to four of Table 9 presents my choice of the priors’ distribution. All other
parameters follow Basu and Bundick (2017), except for the intertemporal elasticity of
substitution, which I increase to 1) = 0.99. The priors and the calibration ensures a sizable
impact of uncertainty shocks at the prior’s mean, while producing also only minor impact
within likely ranges of the prior.

I use quarterly US data on output, consumption, investment, and hours worked from
1985 - 2019. Appendix A.3.2 lists the data sources. Posterior draws are from a Sequential
Monte Carlo Algorithm with N = 2,500 particles (Herbst and Schorfheide, 2015, Algo-
rithms 8, 9, and 10.). The likelihood tempering schedule follows (/N 2, n=1,... Ny,
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Table 9: Prior and posterior distribution

Prior Posterior

Parameter Prior Distribution Mean Standard deviation Mean Standard deviation

b £Y 5 Mean/5 4.83 Mean/36
Wy £Y 0.0015 Mean/5 0.015 Mean/10
wg £Y 0.001 Mean/5 0.009 Mean/8
Wy £Y 0.004 Mean/5 0.0054 Mean/20
w, £Y 0.25 Mean/5 0.1029 Mean/10
Pz B 0.98 0.005 0.71 0.027
Jo¥e B 0.8 0.05 0.99 0.002
Pa B 0.8 0.05 0.95 0.003
o, B 0.8 0.05 0.89 0.012

Notes: .#%: Inverted Gamma Distribution, 9: Beta Distribution. Posterior draws from a SMC Algorithm with N = 2,500
particles (Herbst and Schorfheide, 2015, Algorithms 8, 9, and 10.). The likelihood tempering schedule follows (n/N¢ )? with
Ny = 200. Resampling takes place for effective sample sizes lower N /2. The sampler includes additional the endogenous states
capital and discount rate in a separated block. The states have uninformative priors.

N, = 200. Resampling takes place for effective sample sizes lower N /2. The sampler
treats the endogenous states, namely capital and the discount rate, in a separate block
estimated via likelihood function ,‘Zfl (eq. (4)). These states are assigned non-informative
priors. The Jacobian required for transforming exogenous to endogenous initial states is
obtained via numerical differentiation. To verify the robustness of the results, I re-estimate
the model using the profile likelihood i”pl (eq. (5)). Appendix A.3.3 presents the results.

The innovations are identified by inverting the observation equation for given endoge-
nous states using the Lagrange Inversion Theorem. I use a first-order truncated series
expansion around the known within-period values of the endogenous states and the ex-
pected values of the exogenous states, which guarantees a unique local mapping in the
neighborhood of the expected states.!! The actual solution uses a third-order perturba-
tion solution based on CoRRAM with automatic differentiation (Heer and Maulsner, 2024,
Chapter 3). The Jacobian of the mapping from innovations to observations is derived

analytically from the third-order Taylor series.

'While higher-order series expansions are possible without significant computational cost, my experience
indicates that for rare but large innovations, the series can diverge far from the expansion point, pro-
ducing non-convergent terms and less accurate results than the first-order approximation. Moreover,
note that the first-order inversion does propagate the effects of stochastic uncertainty. This expansion
approach is similar to Kollmann (2017), who guarantee a unique mapping from y to z by replacing
higher-order terms in the exogenous states with their expected values.
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3.2.3 Results

The last two columns of Table 9 present the first two moments of the posterior. Notably, w,
and w increase from their prior means, while w, decreases. Persistence parameters show
contrasting revisions: p, declines markedly, whereas p; and p, move close to one. Across
parameters, except for p,, posterior standard deviations are smaller than prior ones, high-
lighting increased precision, indicating, among others, that the data meaningfully inform
the model.

Figure 8 Panel (a) plots the data used as inputs alongside the model predictions at the
posterior means based on the filtered states. Since the state estimation relies on a first-
order truncation of the Taylor series expansion of the inverse function, the differences
between the data and predictions indicate the loss of accuracy due to this approximation.
These differences are barely visible in Panel (a). Panel (b) presents the absolute differences
on a log,, scale from Panel (a). The time series for output, consumption, and hours worked
show differences on the order of 10~%, while investment exhibits discrepancies an order of
magnitude larger.

In Figure 14, I decompose the business cycle, measured as fluctuations in output, into
contributions from individual shocks using the model at the posteriors’ mean. The de-
composition allows one shock to fluctuate at a time, isolating its effect. I also present the
interactions between shocks, capturing movements in output that are not explained by
any single shock alone. Finally, the sum of the individual shocks and their interactions
is presented—the actual data. Table 10 quantifies the decomposition by reporting the
respective inverse mean squared error normalized to the sum of all inverse errors.

First and most remarkable, the uncertainty shock accounts for nearly the entire busi-
ness cycle, whereas the productivity and discount rate shocks mainly contribute to low-
frequency fluctuations. Regarding the Great Recession, rising uncertainty strongly de-
presses output, while productivity and, in particular, the residual demand shock act coun-
tercyclically. Notably, a decrease in productivity depresses output in the aftermath of the
Great Recession further.

Repeating the exercises in Appendix A.3.3 using the profile likelihood confirms the ro-

bustness of the results regarding the likelihood specification.
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Figure 9: Business cycle decomposition
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Table 10: Normalized inverted mean
squared errors

Z G A v Interaction

0.04 0.02 0.02 0.89 0.03

Notes: Normalized inverted mean squared error: inverted
mean squared error normalized to accumulated inverted
mean squared errors.
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4 CONCLUSION

The initial endogenous state distribution is crucial for inverse filtering in nonlinear state-
space and dynamic latent variable models. In this study, I show how this distribution,
which is mostly unknown, can be derived under various conditions from initial observa-
tions using the change-of-variables theorem. This approach improves the efficiency of state
estimation using the inverse filter. Moreover, when the filter is used to construct the likeli-
hood, it also enhances the efficiency of both Frequentist and Bayesian parameter inference.
Specifically, it enables the computation of likelihoods that are conditional solely on the ini-
tial observations and parameters, that treat the initial endogenous states as parameters,
or that profile out the initial endogenous states.

Monte Carlo studies confirm that this approach substantially improves the accuracy of
state estimation and, consequently, enhances both Frequentist and Bayesian parameter in-
ference using inversion filters. In addition, the Monte Carlo analysis confirms the literature
regarding the superior computational efficiency of inversion filters.

A key limitation of the inversion filter is that it requires stricter conditions: the policy
function must be one-to-one, and, thus, the number of observables must equal the number
of exogenous states and, with a appropriate initialization, exceed the number of endoge-
nous states. However, a discussion here concludes that inversion filters remain well-suited
for many applications and also outlines potential remedies to the mentioned limitations.

Using these insights, a first application—a MBCA Analysis with a global solution—
identifies the wedges responsible for the COVID-19-induced recession and the subsequent
inflation surge in both the European Monetary Union and the United States. Across both
economies, the labor wedge dominates the COVID-19 recession, while the investment
wedge behaves countercyclically. The efficiency wedge plays only a limited role. During
the pandemic peak, the labor wedge generates the strongest inflationary pressure, with
investment and efficiency wedges contributing only modestly. The bond and monetary
wedges act inflationary in the aftermath of COVID-19, but suppressed inflation during the
pandemic itself.

A second application measures the impact of uncertainty shocks on the business cycle,
indicating that uncertainty shocks were the main driver of the business cycle during the
Great Moderation (1985 — 2019). In this case, the inversion uses the Lagrange Inversion
Theorem, demonstrating its applicability in solving the problem of spurious roots away

from the expansion point of local solutions.
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Nonlinearities, for example those arising from uncertainty shocks, are discussed as an
important feature of all economies, and large shocks will persist in macroeconomic time
series even in developed economies due to the COVID-19 recession. The improvements
to the inversion filter presented here provide a fast and reliable method for estimating a
wide range of nonlinear models with endogenous states, thereby opening up possibilities
to address research questions that were previously infeasible. Furthermore, the remedies

outlined for the inversion filter’s limitations merit further investigation.
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A APPENDIX

A.1 Further results of the Monte Carlo experiment

Table 11: RMSE of ML estimates from conditional likelihoods to true ML esti-
mates (parameters in % of prior range, T=100)

gl gpl zl,x:]Ex le,XZ]Ex =%20,>C:IEX 103 Particles

n* 459 5117 5.077%  7.017 8.83™* 11.80**

o 1614 1604 1943 20.94™ 2345 49.55°
pa 182 228 4107 4077 4257 2357
py 136 136° 137 234~ 313 158"
pe 154 154 154  206™ 2737 124"
ps 259 3017 239 3007 3677 469"
w, 006 0.07% 012% 026 038 0227
wy 040 0457 043% 0647 0807  0.87
we 007 007 007 0257 0377 0217

k% Kook Hkk

wp 15.07 1412 1637  18.93™ 21.46"* 5437
X; 534 539 943" 943" 943" 452

skekok sKekk ks
zg 197 199 3497 349 3497 167
zy; 024, 0.26° 025" 033" 040"  0.45™
%5 0.00 000 000  0.00%  0.00%  0.00

z 132 118 139" 158" 175  3.81""

Notes: RMSE of the ML estimates to estimates from the true likelihood from 1032 samples, relative to the
prior range in %. Likelihood specifications are as follows: %! — inverse likelihood conditioned solely on
yi; .,%Pl — maximization includes the initial endogenous state; £1*=* _ initial endogenous state set to the

unconditional first moment; £1%*=EX and ¢20=EX _ same, but with the first 10 and 20 periods burned,
respectively; 10° Particles — 10° particles used, drawn from the states’ stationary distribution. Significance
levels: *, **, *** denote p-values of 0.05, 0.01, and 0.001 for the null hypothesis that the estimate equals
that from £7; , .., ... indicate the same significance levels for the null that the estimate equals that from
.Sfpl. Global maximization used 200 stage-one points and 1,000 trial points (default), particle filter estimates
are done via swarm particles optimization (100 particles—default).
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Table 12: RMSE of ML estimates from conditional likelihoods to true ML es-
timates (parameters in % of prior range, T=400)

gl gl zl,X:EX le,XZIEx 220,x=]Ex 103 Particles
p
n* 073 075 129" 154%™ 1777 927
o 324 311 538" 583" 587" 5530
ps 036 0467 0927 085 0817 110"
py 034 034 034 047 057  0.86™
pg 052 052 052 0597  0.64™ 073
py 048 051% 056" 0.63% 067 311"
w, 001 0017 0027 0.06™ 0097 011"
wy 005 0.05  0.08% 0.12* 0147 054"
w; 0.02 0.02 0.02 0.067* 0.087** 0.11%*

skokok koksk kkok

wp 288 2.69° 490" 5687 5937 5481
x; 371 372 8.89°F 8897  8.89%F 447

sokok sokok sokok *okok
zy 137 138  3.297% 329 3297 1657
zy; 0.03 0.03  0.06™ 0077 007 037
%6 0.00 0.00  0.00  0.00 0.00 0.00"*

kkk

zm 033 032 0.67 070 075  3.83%

Notes: RMSE of the ML estimates to estimates from the true likelihood from 1032 samples, relative to
the prior range in %. Likelihood specifications are as follows: £! — inverse likelihood conditioned solely
on yi; .‘é’pl — maximization includes the initial endogenous state; ¥ *=EX _ initial endogenous state set

to the unconditional first moment; £ 10X=Ex and ¢20X=ExX _ same but with the first 10 and 20 periods
burned, respectively; 10° Particles — 10> particles used, drawn from the states’ stationary distribution.
Significance levels: *, **, *** denote p-values of 0.05, 0.01, and 0.001 for the null hypothesis that the
estimate equals that from £7; ,, ., ... indicate the same significance levels for the null that the estimate
equals that from %!. Global maximization used 200 stage-one points and 1,000 trial points (default),
particle filter estimates are done via swarm particles optimization (100 particles—default).
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Table 13: RMSFE of ML estimates from conditional likelihoods to true ML esti-
mates (in percentage points of the steady state, T=100)

21 gpl gl,XZIEx le,XZEx gZO,X:EX 103 Particles

Jre1 008, 010" 013%™  0.14"*  0.16"  0.14™

brey 007, 008 00977 01077 0127 0157
fr,1 038, 0.45% 0487 055  0.64™  0.78"

fir,g 008, 0.10% 0.10™ 0127 014"  0.18"
Jrea 029, 0327 0417 0457  0.50  0.45"

skksk skksk ok kekok
Grog 023, 0257 0287 0313 0367 0447
freq 125 1.41% 1497 171 195" 240

fires 027, 030%F 0317 0377 043"  0.54™

Notes: One and four periods RMSFE of the ML estimated models to estimates from the true likelihood es-
timated model from 1032 samples in percentage points of the respective variable’s steady state. Likelihood
specifications are as follows: £ — inverse likelihood conditioned solely on y;; ,Zpl —maximization includes the

Yl,x:]Ex 210,x:]Ex

initial endogenous state; - initial endogenous state set to the unconditional first moment;
and £20*=Ex _ same, but with the first 10 and 20 periods burned, respectively; 10° Particles — 10% particles
used, drawn from the states’ stationary distribution. Significance levels: *, **, *** denote p-values of 0.05,
0.01, and 0.001 for the null hypothesis that the estimate equals that from £!; ,, ,,, ... indicate the same
significance levels for the null that the estimate equals that from 5fp1.

Table 14: RMSFE of ML estimates from conditional likelihoods to true ML esti-
mates (in percentage points of the steady state, T=400)

zl zpl °%1,JC=]];£X glo,x:Ex gZO,x:Ex 103 Particles

Jre1 002 0.02°% 0.04% 0.03"*  0.03**  0.08%

skoksk skoksk kkok skeksk
éryp 002, 0.02°  0.02°F 0.02°F  0.027  0.10"™
ir,1 009, 0.10% 013" 013" 013"  0.51*

firyg 002, 0.02°  0.037 0037 003  0.12°
Jrea 007, 0.08%* 0127 0127  0.12%F  0.27%

rys 0.06, 0.07° 0.08"* 0.08"  0.08%  0.32%
frps 032, 0.35% 043%™ 044%™  045%  1.70"

fir,s 0.07  0.08  0.097 0.09%  0.10%*  0.39™

Notes: One and four periods RMSFE of the ML estimated models to estimates from the true likelihood es-
timated model from 1032 samples, in percentage points of the respective variable’s steady state. Likelihood
specifications are as follows: £! —inverse likelihood conditioned solely on y;; ,Sfpl —maximization includes the

initial endogenous state; % *=EX _ initial endogenous state set to the unconditional first moment; £ 10*=Ex
and £2%*=EX _ same, but with the first 10 and 20 periods burned, respectively; 10° Particles — 10° particles
used, drawn from the states’ stationary distribution. Significance levels: *, **, *** denote p-values of 0.05,
0.01, and 0.001 for the null hypothesis that the estimate equals that from £%; ,, ,,, ... indicate the same
significance levels for the null that the estimate equals that from .Ypl.
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Figure 10: Posterior errors of estimated steady state and behavioral parameters (% of prior
range)—no discards
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likelihood specifications are as follows: E(Z|Y;) — inverse likelihood conditioned solely on Y;; £(X;|Y;) — posterior draws include the
initial endogenous states; £(x; = E(x)) — initial endogenous state set to its unconditional first moment; 10° Particles — 10° particles
used, drawn from the states’ stationary distribution. A Random-Walk Metropolis-Hastings sampler is used with 150,000 draws, where
the first 1/3 of the draws are discarded as burn-in.
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Figure 11: Posterior errors of estimated autoregressive coefficients (% of prior range)—no discards
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Figure 12: Posterior errors of estimated innovation’s standard deviation (% of prior range)—no

discards
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Notes: RMSE of the posterior estimates to the true posterior kernel from 1024 samples, relative to the prior range in % (T = 200).
The likelihood specifications are as follows: £! — inverse likelihood conditioned solely on y;; .Sf’fl - posterior draws include the initial

endogenous states; % >*=EX _ initial endogenous state set to its unconditional first moment, 10° Particles — 10° particles used, drawn
from the states’ stationary distribution. A Random-Walk Metropolis-Hastings sampler is used with 150,000 draws, where the first 1/3
of the draws are discarded as burn-in.

A.2 MBCA
A.2.1 MBCA Equation system

The model in stationary variables x read:

a¥ = exp(zy,)0 L_, 13
n, 1—n,
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O ,r= o = o(1-6) -
exp(zn)=/mt[g—0(cf_“) (1 ”i“) ((1—5)exp(zh+1)+a{f“)], (14)

i\ Ce 1—n, t+1
e = exp(z, )k, (15)
yt:{t+6t+gt7 (16)
gpopgll_{t+1 = {t+(1_5)l_<-t: (17)
g = vy exp(2¢,), (18)
Con \7 (1= i\ 7
exp(zp,) = BE, |:(gc—t+1) ( £+1) — exp(zpe41) | (19)
C 1 —-n, t+1
_ T+ 7\ [ 7, \¥
= () (2) et (20)
1+ m* ys
zjt:‘z;s+2jt: je{A,N,G,I,B,R}, (21)
Zt+1 = HZt + €t+17 6t+1 ~ W(Onzn anxnz)) (22)
Zy = [‘EAUiNtJZGtigltigBtigRt]/' (23)

A.2.2 MBCA Data source
EMU-19 All data is on a quarterly frequency.

* Population: Total population national concept Eurostat 30/06/2025 23:00 Thou-

sand persons Seasonally and calendar adjusted data

* Hours worked: Total employment domestic concept Eurostat 16/04/2025 23:00
Thousand hours worked Total - all NACE activities Seasonally and calendar adjusted

data

* GDP: Gross domestic product at market prices Eurostat 28/04/2025 23:00 Chain

linked volumes (2010), million euro Seasonally and calendar adjusted data

* Consumption: Household and NPISH final consumption expenditure Eurostat 28/-
04/2025 23:00 Chain linked volumes (2010), million euro Seasonally and calendar
adjusted data

 Investment: Gross fixed capital formation Eurostat 28/04/2025 23:00 Chain linked

volumes (2010), million euro Seasonally and calendar adjusted data

* Inflation: Gross domestic product at market prices Eurostat 28/04/2025 23:00 Price
index (implicit deflator), 2010=100, euro Seasonally and calendar adjusted data
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Gross domestic product at market prices

Interest rate: 3-month rate Eurostat 17/04/2025 11:00

US All data is on a quarterly frequency.

Population: Population, Thousands, Quarterly, Not Seasonally Adjusted Data, B230-
RCOQ173SBEA, Updated: 2025-01-30 Federal Reserve Economic Data, Federal Re-

serve Bank of St. Louis

Hours worked: Quarterly hours worked and employment in total U.S. economy and
subsectors, Data released March 6, 2025; Bureau of Labor Statistics, Office of Pro-

ductivity and Technology, (Seasonally Adjusted Data, information requested)

GDP: Gross domestic product at market prices Table 1.1.6. Real Gross Domestic
Product, Chained Dollars [Billions of chained (2017) dollars] Seasonally adjusted at

annual rates, Bureau of Economic Analysis, Last Revised on: June 26, 2025

Consumption: Personal consumption expenditures Table 1.1.6. Real Gross Domestic
Product, Chained Dollars [Billions of chained (2017) dollars] Seasonally adjusted at

annual rates, Bureau of Economic Analysis, Last Revised on: June 26, 2025

Investment: Gross private domestic investment Table 1.1.6. Real Gross Domestic
Product, Chained Dollars [Billions of chained (2017) dollars] Seasonally adjusted at

annual rates, Bureau of Economic Analysis, Last Revised on: June 26, 2025

Inflation: Gross domestic product at market prices Table 1.1.4. Price Indexes for
Gross Domestic Product Chained Dollars[Index numbers, 2017=100] Seasonally ad-

justed, Bureau of Economic Analysis, Last Revised on: June 26, 2025

Interest rate: Short-term interest rates, Topic: Economy > Short-term economic
statistics OECD.SDD.STES,DSD STES[at]DF_FINMARK,4.0,filtered,2025-04-29 21-
17-08

A.3 Basu and Bundick (2017)

A.3.1 Equation system

The model read:

sdf, —E.(B((exp(pa,41 + exp(ev‘)latﬂ)ea,t+1))/exp(at+1)) e
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x (e (1 =11)' ™M/ (A =n ) =% (¢ [ DT /) %) =0

(24)
y, + fixedcost — productionconstant - ( exp(z, )nt)l_a(utkt)“ = (25)
— fi
n, - 1—1n ¢ _a —a)yt + fixedcost —o 26)
n l1-n, Uy
fi
(6 + By, — 1)k, — a2 TSI 27)
1- qbk (ﬂ -0 ) U
log(r) — (1= p,)(log(r,) + plog(m,/m,) + p, log(y. /1)) ) = 0 (28)
T
Cr+gyyteXP(gr)_(y lnvt_7(n_;_1) J/t):O (29)
inv 2 .
ke — (1= (8o + 81(u, — 1) + —( u —1)%) — @( o~ 00) e+ inv)=0  (30)
t
Oy
vf,— (utﬂltyconstant exp(a,1)(c](1—n)"™) i + ﬁ(vftﬂ)evf )1_" =0 (31)
(Vft+1) E v t+1 =0 (32)
1—rr,-sdf,=0 (33)
1—r,-sdf,-m =0 (34)
Uy 0(Yeqq + fixedcost) 1
1—sde( 1l + _ 1—(6y+6,(u, 1 —1)...
o Perllerrke 1—¢i(invea/kea — 0)( ° e
9
+ 22t =17 = Py ey = 507
+ ¢r(inve [k — 50)(invt+1/kt+l))/ ; : ) =0 (35)
1—¢u(inv,/k,— &)
qbﬂ(ﬁ—l)——ﬂ:«: ((1 0,)+— +sdft¢n( —1)%“%”1):0 (36)
TCSS TCSS TESS yt 7-[55
a1~ (Paa +explevola,)e, ) = (37)

A.3.2 Data source

US All data is on a quarterly frequency.

* Population: Population, Thousands, Quarterly, Not Seasonally Adjusted Data, B230-
RCOQ173SBEA, Updated: 2025-01-30 Federal Reserve Economic Data, Federal Re-

serve Bank of St. Louis

* Hours worked: Quarterly hours worked and employment in total U.S. economy and

48



Table 15: Prior and posterior distribution—profile likelihood

Prior Posterior

Parameter Prior Distribution Mean Standard deviation Mean Standard deviation

bk £Y 5 Mean/5 5.56 Mean/28
wy LY 0.0015 Mean/5 0.013 Mean/11
wg LY 0.001 Mean/5 0.021 Mean/7
Wy £Y 0.004 Mean/5 0.0056 Mean/22
w, £Y 0.25 Mean/5 0.1213 Mean/10
Pz B 0.98 0.005 0.74 0.023
Oc B 0.8 0.05 0.99 0.003
On B 0.8 0.05 0.94 0.004
0, B 0.8 0.05 0.89 0.01

Notes: .#%: Inverted Gamma Distribution, 98: Beta Distribution. Posterior draws from a SMC Algorithm with N = 1, 000 particles (Herbst
and Schorfheide, 2015, Algorithms 8, 9, and 10.). The likelihood tempering schedule follows (n/Ng )? with Ng = 200. Resampling takes
place for effective sample sizes lower N /2. The likelihood is a profile likelihood with respect to the endogenous states and conditional on
the first observation.

subsectors, Data released March 6, 2025; Bureau of Labor Statistics, Office of Pro-

ductivity and Technology, (Seasonally Adjusted Data, information requested)

* GDP: Gross domestic product at market prices Table 1.1.6. Real Gross Domestic
Product, Chained Dollars [Billions of chained (2017) dollars] Seasonally adjusted at

annual rates, Bureau of Economic Analysis, Last Revised on: June 26, 2025

* Consumption: Personal consumption expenditures Table 1.1.6. Real Gross Domestic
Product, Chained Dollars [Billions of chained (2017) dollars] Seasonally adjusted at

annual rates, Bureau of Economic Analysis, Last Revised on: June 26, 2025

e Investment: Gross private domestic investment Table 1.1.6. Real Gross Domestic
Product, Chained Dollars [Billions of chained (2017) dollars] Seasonally adjusted at

annual rates, Bureau of Economic Analysis, Last Revised on: June 26, 2025

A.3.3 Profile likelihood
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Figure 13: Prediction residuals—profile likelihood
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Figure 14: Business cycle decomposition—profile likelihood
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Table 16: Normalized inverted mean

squared error—profile likelihood

VA G A v Interaction

0.01 0.03 0.01 0.91 0.03

Notes: Normalized inverted mean squared error: inverted
mean squared error relative to accumulated inverted mean
squared errors.
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