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Abstract

This paper advances inference in nonlinear state-space models by deriving the dis-
tribution of initial endogenous states conditional on initial observations, addressing
the general unknown nature of the unconditional distribution. Together with the in-
version filter, this allows the likelihood to be evaluated deterministically and condi-
tional on the initial observations. Such conditional likelihoods are commonly used
in practice, e.g., when estimating autoregressive processes via least squares. Monte
Carlo studies demonstrate that employing the conditional distribution of endogenous
states can significantly enhance both Frequentist and Bayesian inference concerning
states and parameters. The paper illustrates the method’s practical relevance with
two applications: first, a Monetary Business Cycle Accounting analysis of the COVID-
19 recession and subsequent inflation surge in the US and Eurozone using a global
solution; second, an evaluation of uncertainty shocks on the US business cycle during
the Great Moderation via a third-order perturbation method. Additionally, the paper
discusses limitations of the inversion filter and proposes remedies, particularly for spu-
rious many-to-one policy function mappings that arise with higher-order perturbation
solutions.
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1 INTRODUCTION

Macroeconomics requires nonlinear solutions to capture complex or asymmetric responses

to shocks, as well as global solutions to handle large disturbances such as the COVID-19

pandemic. Conducting inference and parameter estimation in these models, in turn, ne-

cessitates the use of nonlinear filters. The inversion filter (Fair and Taylor, 1983) offers a

computationally attractive method for this purpose, recovering latent shocks by inverting

the observation equation. The change-of-variables theorem allows the likelihood of the

data to be expressed as the product of the conditional shock density and the Jacobian de-

terminant. Yet, the filter faces a critical limitation: in applications featuring latent endoge-

nous states, the unknown distribution of the initial endogenous states and the recursive

generation of subsequent states forces the results, including the likelihood, to be strictly

conditional on these unknown initial values.1 Conditioning on unknown initial endoge-

nous states biases the resulting likelihood and, consequently, likelihood-based inference

(Boehl and Strobel, 2024).

This paper resolves this limitation by characterizing the distribution of initial endoge-

nous states conditional on initial observations. Using this distribution, the likelihood func-

tion obtained from the inversion filter can be expressed conditional only on the initial ob-

servations, which is standard practice in applied macroeconometrics, for example, when

estimating autoregressive processes via least squares. The derivation of the conditional

distribution of the endogenous states follows the logic of the inversion filter. Under local

invertibility, the initial endogenous states and observations uniquely determine the cor-

responding exogenous shocks. Applying the change-of-variables theorem then allows the

conditional distribution of the endogenous states to be expressed in terms of the stationary

distribution of the shocks and a volume-adjustment term associated with the mapping to

the exogenous shocks.2

The conditional endogenous state distribution enables three distinct likelihood func-

tions: i) integrating out the initial endogenous states to obtain the exact conditional like-

lihood, ii) treating the initial states as parameters in the likelihood, or iii) constructing a

profile likelihood in which the likelihood is maximized with respect to the initial states

1In practice, the endogenous states are set to their steady-state values, and the first 10-20 per-period likeli-
hood contributions are typically discarded to mitigate the impact of the initial condition (e.g., Guerrieri
and Iacoviello, 2017; Kollmann, 2017).

2For mappings from Rn→ Rm with m> n, this term generalizes the usual Jacobian determinant and is also
referred to as the Gram determinant of the Jacobian.
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while remaining conditional on the initial observations. Crucially, when the initial en-

dogenous states are treated as parameters in linearized models, the Jacobian determinant

is constant with respect to these states and is therefore usually ignored during maximiza-

tion with respect to these states.

After deriving the conditional distribution of the endogenous states and the various

forms of the likelihood, I conduct a Monte Carlo analysis using a Dynamic Stochastic

General Equilibrium (DSGE) model with one endogenous state and four first-order au-

toregressive exogenous shocks—the exogenous states. Here, I use a linear-Gaussian ap-

proximation of the model, applied to both the data-generating process and the econo-

metric model, which allows to calculate the likelihood analytically and thereby provides

a tractable benchmark distribution of estimators and posteriors (Herbst and Schorfheide,

2015; Farmer, 2021; Fehrle et al., 2025).

The first exercise focuses on state estimation when the model parameters are known. Us-

ing the conditional distribution of the endogenous states reduces the Root Mean Squared

Error (RMSE) of the initial states by up to 25% compared to a naive initialization at the

model’s stable fixed point. When combined with additional information from the likeli-

hood, the RMSE decreases by nearly 40% relative to the naive initialization. For compar-

ison, Kalman filtering reduces the RMSE of the initial states by slightly more than 40%,

and smoothing achieves reductions of up to 50%.

Building on the state estimation results, which delivers the conditional shock density

needed for the derivation of likelihood, the subsequent exercises shift focus to parame-

ter estimation using Maximum Likelihood (ML) and Bayesian estimation exercises for two

structural parameters and all parameters of the stochastic processes. The usage of the con-

ditional distribution of the endogenous states decreases the RMSE to the exact maximum

likelihood estimates up to 50% compared to a naive initialization. This improvement re-

mains consistent even when incorporating a 10-to-20-period burn-in phase to the naive

initialization. As one of the exogenous states can be inferred independent of the endoge-

nous state, i.e., directly from the data, the corresponding estimates are equivalent to es-

timating an autoregressive process using least squares. Most of the remaining parameter

estimates yield RMSE of a similar magnitude when using the conditional endogenous state

distribution.

When evaluating the whole posterior with uninformative priors, the improvement is

even greater, with the RMSE reduced by up to 75%. The benefits of using the conditional

endogenous state distribution are also evident in state estimation with estimated parame-
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ters and in forecasting based on estimated parameters.

I use these insights for two applications. First, I conduct a Monetary Business Cycle

Accounting (MBCA) analysis (Šustek, 2011; Chari et al., 2007) of the COVID-19-induced

recession and the subsequent inflation surge in the US and the European Monetary Union

(EMU) using a global solution method. It turns out that the labor wedge dominates the re-

cession and drives inflationary pressure at the pandemic peak, while the investment wedge

acts countercyclical but also inflationary. Production efficiency contributes modestly. The

bond and monetary wedge act inflationary after the pandemic but suppressed inflation

during the pandemic itself.

As a second application, I measure the impact of uncertainty shocks on the US busi-

ness cycle during the Great Moderation (1985 – 2019) using the model from Basu and

Bundick (2017) with a third-order perturbation. This New-Keynesian model features un-

certainty shocks that can generate co-moving responses in consumption, investment, and

hours worked. By estimating the underlying shock process parameters and a single struc-

tural parameter, together with inferring the latent states, the analysis indicates that uncer-

tainty shocks account for most of the fluctuations during the Great Moderation, whereas

productivity shocks have little influence on the cycle.

Unfortunately, the inversion filter comes not without limitations. In general, due to the

filters logic, it requires a one-to-one (bijective) policy function, which also implies that

the number of observables must equal the number of exogenous states. The initialization

method proposed here introduces a third condition: the number of endogenous states

must not exceed the number of exogenous states. I discuss how these restrictions, while

potentially limiting in theory, do not pose significant constraints for large classes of appli-

cations in macroeconomics and dynamic economics. Moreover, I outline possible remedies

and extensions that can relax or work around these limitations in practice, including cases

where errors from local approximation transform an otherwise one-to-one policy function

into a spurious many-to-one mapping.

Kollmann (2017) addresses the problem of spurious many-to-one mappings that arise

from higher-order Taylor expansions by inverting the pruned policy function of Kim et al.

(2008) and setting the remaining higher-order terms that depend solely on exogenous

states equal to their expected values. In this study, I propose instead using the Lagrange

Inversion Theorem, which provides a formal and systematic method for locally inverting

an analytic function via a series expansion.

The analyses of Amisano and Tristani (2011), Guerrieri and Iacoviello (2017), and Cuba-
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Borda et al. (2019) do not encounter spurious many-to-one mappings, as they consider

MIT regime-switching models with otherwise linear policy functions.3 However, Boehl

and Strobel (2024) report root-finding problems even in one-to-one policy functions due to

non-convergence of numerical algorithms. In such cases, the Lagrange Inversion Theorem

can also be beneficial. Likewise, although sufficiently accurate global solution methods

should preclude spurious many-to-one mappings when the actual policy function is one-to-

one, the Lagrange Inversion Theorem may provide a remedy when root-finding algorithms

fail to converge.

The literature has already documented several advantages of the inversion filter. Fair

and Taylor (1983), Guerrieri and Iacoviello (2017), Kollmann (2017), Cuba-Borda et al.

(2019), Atkinson et al. (2020), Huber (2022), and Fehrle and Huber (2023) emphasize

its numerical efficiency. Moreover, Fehrle and Huber (2023) show that, when the model

is linearized, second moments of the innovations can be estimated analytically.4 Finally,

Cuba-Borda et al. (2019) highlight that the inversion filter does not require the introduc-

tion of measurement errors generally. In this paper, I further emphasize the advantages of

the filter’s likelihood differentiability. In particular, I show that this approach can substan-

tially improve accuracy in ML estimation and in sampling with a Random-Walk Metropolis-

Hastings algorithm. This enhancement is notable when compared to a benchmark boot-

strap particle filter, primarily because the filter allows for derivative-based optimization.5

That said, the goal of this study is not to compare different classes of nonlinear filters,

but to enhance the statistical efficiency of the inversion filter and thereby to broaden the

toolbox for nonlinear state-space estimation.

In early studies on inversion filters, endogenous states were not latent (Fair and Tay-

lor, 1983) or non-existent (Amisano and Tristani, 2011). Studies with latent endogenous

states set these endogenous states to the steady state (Guerrieri and Iacoviello, 2017; Koll-

mann, 2017; Atkinson et al., 2020; Huber, 2022; Fehrle and Huber, 2023; Boehl and Stro-

bel, 2024). Kollmann (2017) and Guerrieri and Iacoviello (2017) discard the first 10

and 20 per-period likelihood contributions, respectively. Cuba-Borda et al. (2019) con-

duct a Monte Carlo study, where the initial states are set to their true values. Fehrle and

3Holden (2023) and Boehl and Strobel (2024) emphasize that many-to-one mappings may arise when the
possibility of switching regimes is anticipated.

4Note that in the linear case and an initialization at the steady-state, the inversion filter is equivalent to a
steady-state Kalman filter.

5Accuracy in the Bayesian sampler is enhanced as the proposal distribution’s covariance matrix can be set
to the inverse of the negative Hessian at the posterior mode (Herbst and Schorfheide, 2015, Chapter 4).
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Huber (2023) use the results from the inversion filter as an initial guess for a more time-

consuming estimation based on the exact likelihood. Huber (2022) shows how the exact

likelihood in linear state-space models can be reconstructed from the recursion that is con-

ditional on the initial states, thereby reducing computational time for the exact likelihood.

Lastly, it is worth noting that the Monte Carlo analyses of Cuba-Borda et al. (2019),

Atkinson et al. (2020), and Boehl and Strobel (2024) compare the inversion filter either to

the true parameter values or to other likelihood approximations. In contrast, as mentioned,

in this paper I compare the inversion filter directly to the exact likelihood, evaluating

how the distribution of the estimator derived from the inversion filter matches the true

estimator distribution. In this way, the paper contributes to the broader understanding of

the use of the inversion filter.

The remainder of the paper is organized as follows. The first part presents the method-

ological advancements, including the derivation of the conditional distribution of the en-

dogenous states and the corresponding likelihoods. The analytic derivation is followed by

a Monte Carlo study and a discussion that addresses, among other topics, how to handle

spurious many-to-one mappings. The second part presents the two applications: MBCA

and uncertainty shocks. Finally, the paper concludes. An appendix provides additional

results and information, particularly confirming the robustness of the analysis presented

here.

2 INVERSION FILTER

2.1 Analytical Framework

To make the use of the conditional distribution of the initial endogenous states for the like-

lihood function straightforward, the exposition begins with a model of purely exogenous

latent states, as applied, for example, by Amisano and Tristani (2011). In this setting,

both the exact likelihood and the likelihood conditional on the initial observations can be

obtained using the inversion filter. For models that also include endogenous states, the

presentation of the likelihood conditional on the initial endogenous states then becomes

straightforward. This likelihood corresponds to the benchmark inversion filter’s in the

recent literature.

I then present the paper’s main contribution. I first derive the distribution of the initial

endogenous states conditional on the initial observations using the change-of-variables
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theorem. I then show how this distribution can be used to marginalize over the initial

endogenous states to obtain the likelihood conditional solely on the initial observations

again. As an alternative, I construct a likelihood that explicitly includes the probability

distribution of the initial endogenous states and the profile likelihood with respect to the

initial endogenous states.

Consider now the first case: a state-space model yt = f (zt), where yt is a set of observ-

ables and zt is a vector of purely exogenous latent states following a stationary Markov

process. The conditional transition density is given by p(zt+1 | zt) = pε(εt+1) and the

stationary unconditional distribution by pz(zt). Both distributions are closed form. If

dim(zt) = dim(yt) and f is one-to-one and continuously differentiable (i.e., a diffeo-

morphism on the support of zt), then zt is uniquely determined by yt = f (zt) and the

change-of-variables theorem yields the log-likelihood:

L =L (Y1:T | Θ) = ln
�

pz(z1)
�

�

�det ∂ z1
∂ Y1

�

�

�

�

+
T−1
∑

t=1

ln
�

pε(εt+1)
�

�

�det ∂ εt+1
∂ yt+1

�

�

�

�

,

where zt = f −1(yt), εt+1 = zt+1 −Et[zt+1], and Y1:T = {yt}Tt=1.

Conditioning on the first T b observations gives

L Tb =L (YT b+1:T | Y1:T b ;Θ) =
T−1
∑

t=T b

ln
�

pε(εt+1)
�

�

�det ∂ εt+1
∂ yt+1

�

�

�

�

.

For illustration, a least squares estimation of an observable q-order autoregressive process

is equivalent with a conditional ML estimation with T b = q.

Now consider the standard case, where the model includes an additional vector of

endogenous states x t , with observations given by yt = f (x t , zt) and dynamics x t+1 =

g(x t , zt). Given x1 and y1, the invertibility of f in zt implies z1 is uniquely determined—

for dim(y) = dim(z). Then, (x t , zt) 7→ (x t+1, zt+1) is recursively determined: from (x t , zt),

the function g yields x t+1; the observation yt+1 then identifies zt+1. Iterating this procedure

determines (x t , zt) for t = 1, . . . , T , given x1 and Y1:T . While the exact likelihood function

is unknown, as long as the unconditional, stationary distribution px(x t) is unknown, the

likelihood function conditional on x1 and the first T b observables read

L Tb ,x =L (YT b+1:T |Y1:T b , x1;Θ) =
T−1
∑

t=T b

ln

�

pε(εt+1(x1))

�

�

�

�

det
∂ εt+1

∂ yt+1

�

�

�

�

�

. (1)
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In general, x1 is unobserved, and any misspecification of this initial condition biases the

likelihood. However, the bias diminishes gradually under certain conditions as t increases.

Thus, the literature on inverted filters typically discards the first few per-period likelihood

contributions, setting T b >> 1 (Kollmann, 2017; Guerrieri and Iacoviello, 2017).

While the problem of the unknown unconditional stationary distribution px(x t) stays

unsolved, the conditional density of x1 given y1 (p(x1|y1)) can be obtained by a change

of variables. Specifically, regarding y1 as deterministic, inverting the system delivers z1 =

f −1
z (y1, x1). As long as the number of endogenous states does not exceed the number of

exogenous states (dim(x) ≤ dim(z)), the conditional density of the initial state is well-

defined. Specifically, if we define the Jacobian

J(x1) =
∂ f −1

z (y1, x1)

∂ x1
∈ Rdim(z)×dim(x),

then the density can be expressed as

p(x1 | y1) = pz

�

f −1
z (y1, x1)
�

Ç

det
�

J(x1)⊤J(x1)
�

. (2)

In the exactly identified case (dim(x) = dim(z)), this reduces to the usual determinant

|det J |. In overidentified cases (dim(x) < dim(z)), the factor
p

det(J⊤J) generalizes the

Jacobian to a rectangular mapping, giving the appropriate volume scaling of x1 in z-space.

This is known as the Gram determinant.

From this conditional distribution of x1, the likelihood, solely conditional on the first T b

observations, is

L Tb =L (YT b+1:T | Y1:T b ;Θ) = ln

∫

p(x1 | Y1)
T−1
∏

t=T b

pε
�

εt+1(x1)
�

�

�

�det ∂ εt+1
∂ yt+1

�

�

� d x1. (3)

Note that for standard DSGE models, where zt is solely first-order autoregressive, T b = 1

is sufficient.

Alternatively, if x1 is treated as a parameter the likelihood reads

L Tb
f =L (YT b+1:T | Y1:T b ; {x1,Θ}) = ln p(x1 | Y1) +

T−1
∑

t=T b

ln
�

pε
�

εt+1(x1)
�

�

�

�det ∂ εt+1
∂ yt+1

�

�

�

�

, (4)
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and the corresponding profile likelihood

L Tb
p =Lp(YT b+1:T | Y1:T b ;Θ) =max

x1

L (YT b+1:T | Y1:T b ; {x1,Θ}). (5)

2.2 Monte Carlo analysis

In this subsection, I present the Monte Carlo analysis, which quantifies the improvements

from using the conditional distribution of the endogenous states for both state and param-

eter inference in a practical setting.

In line with the Monte Carlo study from Kollmann (2017), the setup is a real business

cycle model with distorted first-order conditions. The model reads in canonical form

α
yt

nt
= exp(zN t)θ

ct

1− nt
(6)

1= exp(zBt)βEt

�

�

ct+1

ct

�σ �1− nt+1

1− nt

�σ(1−θ )�

1−δ+α
yt+1

kt+1

�

�

(7)

yt = exp(zAt)k
α
t n1−α

t , (8)

yt = it + ct + gt , (9)

kt+1 = it + (1−δ)kt , (10)

gt = γyt exp(zGt), (11)

zi t+1 = ρizi t +ωiεi t+1, εi t+1 ∼N (0,1), i ∈ {A, B, G, N}, (12)

and the parameters {β ,σ, n∗,α,δ,ρi} = {0.99,2, 0.3,0.37, 0.014,0.95} as well as ωi =

0.01 for i ∈ {A, G, N} and 0.0025 for i = B. As standard in the DSGE literature, instead of

calibrating θ , I pin down hours worked in the steady state n∗, which in turn determines

θ from eq. (6), evaluated at the model’s deterministic steady state. Note that the states

zi t follow univariate first order autoregressive processes and correspond to the exogenous

states zt in the section above, while the state kt arises endogenously in line with x t in the

section above.

Although the primary goal is to improve non-linear filtering, I conduct the analyses us-

ing the linearized version of the model—both as the data-generating process and as the

econometric model. This is a common approach (e.g., Herbst and Schorfheide, 2015, Part

III; Farmer 2021,Fehrle et al. 2025) as it entails no loss of generality while offering two key

advantages. First, solving the linearized model is computationally efficient, which allows

us to use a large number of Monte Carlo replications and thereby reduce sampling variabil-
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ity. Second, and more importantly, the exact likelihood function be evaluated analytically

only for the linear case by means of the Kalman filter. This provides a clean benchmark

for assessing filtering performance.

The Monte Carlo setup is as follows. I simulate the model N = 1024 times, each over

1200 periods, with the first 1000 periods serving as a burn-in phase. I then use the controls

{Yt}1200
t=1001 = {yt , ct , it , nt}1200

t=1001 as the observable variables, in line with yt in the section

above. This results in a total of nY × T × N = 4× 200× 1024 observations. The model is

calibrated at a quarterly frequency, so the effective time span of the retained data corre-

sponds to 50 years—comparable to the data availability in many developed and emerging

economies.

2.2.1 State estimation

In a first step, I investigate the impact of different initialization methods on the estimates

of the latent states, assuming all parameters are known. Figure 1 plots the RMSE of these

estimates. The yellow line corresponds to the inverted filter initialized at the unconditional

mean of the endogenous state, Ekt (Ex1). The black dashed line shows the inverted filter

initialized at the point estimate of k1 given Y1 ((Ey1
x1) eq. (2)), while the red line repre-

sents the inverted filter initialized with the full distribution of k1 conditional on Y1 (L 1,

eq. (3))—effectively implementing smoothing conditional on Y1. The blue dashed line

reflects the maximum likelihood estimate of k1, obtained from the likelihood conditional

on Y1 (L 1
p , eq. (4)). The brown line shows the estimates from the Kalman filter, and the

green line those from the Kalman smoother. The gray lines—loosely, normally, and densely

dotted—represent estimates using an approximation of the full (unconditional) likelihood

from bootstrap particle filters with 102, 103, and 104 particles, respectively. Finally, the

dashed-dotted line indicates the RMSE when using the unconditional mean of the state as

the estimate for all t.

It is worth noting that, since we observe yt , ct , it , we can infer gt exactly from the lin-

earized version of equation (9), and consequently also recover zGt from the linearized

version of equation (11). In the same manner, using yt , ct , nt and equation (6), we can

exactly infer zN t . As a result, all filters and smoothers estimate the states zGt in Panel (c)

and zN t in Panel (d) up to numerical precision correctly.

Regarding the endogenous state kt in Panel (e), the filter that initializes k0 at the uncon-

ditional mean Ekt results in an RMSE close to 10 percentage points—the unconditional
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Figure 1: State estimation
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Ey1
(x1) – initial endogenous state conditional on Y1; L 1 – smoothing with likelihood conditioned on y1; L 1
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standard deviation of kt . Using the first observation to estimate the initial kt (eq. (2))

reduces the RMSE by 25%, as indicated by the dotted line. Both smoothing with the like-

lihood conditional on Y1 (L 1) and using the profile likelihood further reduce the RMSE,

bringing it nearly 40% lower than the naive initialization at Ek. The conditional likelihood

approach yields kt estimates nearly as accurate as those from the Kalman filter, which re-

sults in an RMSE slightly more than 40% lower than the naive initialization (k1 = Ek). The

Kalman smoother outperforms all other estimators, with an RMSE that is 50% lower than

the naive initialization. Hence, using the conditional likelihood from the inverted filter

brings the RMSE for k1 down to 80% of the best estimator. The accuracy of the particle

filter with a small number of particles (102) is similar to that obtained by using the first

observation, Y1, to estimate the endogenous state (eq. (1)). Increasing the number of par-

ticles by a factor of 10 improves accuracy, delivering an RMSE similar to that of smoothing

with the conditional likelihood on Y1 and maximizing k1 given this likelihood. Increasing

the amount of particles by another factor of 10 further closes the gap to the analytical filter

by more than half.6

The patterns of RMSE of zAt and zBt in Panel (a) and (d) are similar to the estimates for

kt . Notably, initializing the endogenous state at its mean results in a larger RMSE for the

estimation of zA1 compared to a naive estimation using the unconditional mean EzAt .

2.2.2 Full estimation

Next, I perform a Bayesian estimation with respect to the parameter vector

Θ = {σ, n∗,ρA,ρN ,ρG,ρB,ωA,ωN ,ωG,ωB} ,

assuming flat, uninformative priors, as specified in Table 1. The remaining parameters are

fixed at their true values.

Given the model, the observables, and the known parameters, this analysis examines

how different sources of uncertainty affect the estimation of states and parameters. First,

since γ is known, we can still infer the state zGt with certainty. Consequently, the dif-

ferences between the exact, unconditioned likelihood estimates and the conditional like-

lihood estimates for ρG and ωA are analogous to the difference between estimating an

first-order autoregressive process using the exact likelihood versus least squares, where

6Note that smoothing with particle filters is a non-trivial task. As a result, states are almost always estimated
using filtering, not smoothing.
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Table 1: Prior distribution

Parameter Lower Bound Upper Bound Prior Distribution

n∗ 0.1 0.5 U (0.1, 0.5)
σ 0.01 10 U (0.01, 10)
ρA 0 0.999 U (0, 0.999)
ρN 0 0.999 U (0, 0.999)
ρG 0 0.999 U (0, 0.999)
ρB 0 0.999 U (0, 0.999)
ωA 0.001 0.1 U (0.001, 0.1)
ωN 0.001 0.1 U (0.001, 0.1)
ωG 0.001 0.1 U (0.001, 0.1)
ωB 0.00025 0.025 U (0.00025, 0.025)

the latter is the standard in applied times series analysis. Second, because θ depends on

the estimates of the steady state n∗, now the estimates of zN and the related parameters ρN

and ωN are influenced by the uncertainty in n∗. Third, since α is known, the estimates of

zA and the related parameters ρA and ωA are affected solely by the uncertainty regarding

the initial endogenous state k0 via equation (8). Lastly, the estimates of zB and the related

parameters ρB and ωB as well as σ and n∗ depend on the entire uncertainty.

Posterior’s mode—constraint maximum likelihood First, I compare the posterior’s

mode resulting from the different conditional likelihoods with the unconditional one.

Since the priors are uniformly distributed, the parameter values at the posterior’s mode

coincide with their (constrained) maximum likelihood estimates. To avoid potential issues

with local maxima, I perform global maximization using 200 stage-one points and 1,000

trial points. Additionally, I conduct the analysis using a particle filter with 103 Particles ini-

tialized with draws from the stationary distribution of the states. The maximization of the

particle-filter likelihood uses a particle swarm filter using 100 particles in each generation.

Table 2 presents the RMSE of the ML estimates of the parameters and the resulting initial

states to the exact ML estimates. The RMSE of the parameters is relative to the prior range.

Again, L 1 indicate the results from the likelihood conditioned on the first observations of

Y1 (eq. (3)) and L 1
p is the profile likelihood (5)). The likelihood conditioned on k1 = Ek

is represented by L 1,x=Ex , while L 10,x=Ex and L 20,x=Ex indicate estimates from the same

initialization, however, the first 10 and 20 periods are burned (eq. 1, T b ∈ {1,10, 20}).
Additionally, I report estimates using an approximation of the full (unconditional) likeli-
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hood from a bootstrap particle filter with 103particles. One, two, and three upper asterisks

indicate p-values lower than 0.05, 0.01, and 0.001 for the null hypothesis that the estimate

equals that from L 1 and lower asterisks for the null hypothesis that the estimate equals

that from L 1
p .

As part of the main contribution of this study, the estimates solely conditional on the

first observations of Yt (L 1, L 1
p ) are significant superior than the estimates from L 1,x=Ex

or statistically not different. The latter holds for ρN and by construction for all estimations

regarding g (ρg , ωG, zG1). As the RMSEs regarding g are equivalent to RMSEs of the

common approach to estimate autoregressive processes with least squares instead of the

exact likelihood, we can consider the RMSEs regarding g as an acceptable magnitude.

From this point of view in turn, we can consider the improvements due to conditioning

on Y1 regarding the reaming shock parameters as high, as they bring down the RMSEs

from up to more than twice as high as the g-estimates to be partly even lower than of the

g-estimates.

Of additional interest is that, contrary to the intuition posed by the literature, the loss

of information due to the burned periods is more decisive than the gain due to only using

more exact states. Except of ρA, where the burn-in gives indeed slightly more accurate

estimates, the RMSE is up to four times larger with a burn-in compared to the likelihood

conditional on the endogenous state but without a burn-in. Considering the estimates ob-

tained using the particle filter, I find that it outperforms the method based on x1 = Ex for

most zA- and k-related estimates, but performs worse for the remaining variables. More im-

portantly, however, the particle filter’s estimates have a higher RMSE than the likelihoods

conditioning on the initial observation of Yt—namely, L 1 and L 1
p . Lastly, the estimates

from the likelihood conditioned solely on the first observations L 1 are significantly supe-

rior than the estimates from profile likelihood L 1
p or statistically not different. However,

the differences are minor.

Table 3 represents the one and four-period Root Mean Squared Forecast Error (RMSFE)

resulting from forecasts of the estimates from conditional likelihoods to the forecasts from

the estimates from the exact likelihood. Again L 1 delivers significantly most accurate

results, followed by L 1
p . Further, L 1,x=Ex more precise forecasts than estimates from like-

lihoods with a burn-in phase (L 10,x=Ex ,L 20,x=Ex) and all conditional filters achieve higher

accuracy than the particle filter.

Given that the exercise analyzes the evaluation of both the posterior mode and the

maximum likelihood estimator, I repeat these exercises for shorter (T = 100) and longer

14



Table 2: RMSEs of ML estimates from conditional likelihoods to true ML esti-
mates (parameters in % of prior range)

L 1 L 1
p L 1,x=Ex L 10,x=Ex L 20,x=Ex 103 Particles

n∗ 2.30 2.12 2.68∗∗∗∗∗∗ 3.52∗∗∗∗∗∗ 4.08∗∗∗∗∗∗ 10.22∗∗∗∗∗∗
σ 10.95 10.29 13.78∗∗∗∗∗∗ 14.95∗∗∗∗∗∗ 16.00∗∗∗∗∗∗ 52.84∗∗∗∗∗∗
ρA 0.80 0.98∗∗∗∗∗∗ 2.01∗∗∗∗∗∗ 1.97∗∗∗∗∗∗ 1.92∗∗∗∗∗∗ 1.46∗∗∗∗∗∗
ρN 0.74 0.70 0.71 1.04∗∗∗∗∗∗ 1.31∗∗∗∗∗∗ 1.21∗∗∗∗∗∗
ρG 0.85 0.85 0.85 1.02∗∗∗∗∗∗ 1.18∗∗∗∗∗∗ 0.92∗∗∗∗
ρB 1.11 1.17 1.13∗∗∗∗∗∗ 1.26∗∗∗∗∗∗ 1.42∗∗∗∗∗∗ 3.74∗∗∗∗∗∗
ωA 0.02 0.03∗∗∗∗∗∗ 0.06∗∗∗∗∗∗ 0.13∗∗∗∗∗∗ 0.18∗∗∗∗∗∗ 0.15∗∗∗∗∗∗
ωN 0.17 0.16 0.19∗∗∗∗∗∗ 0.29∗∗∗∗∗∗ 0.33∗∗∗∗∗∗ 0.66∗∗∗∗∗∗
ωG 0.04 0.04 0.04 0.12∗∗∗∗∗∗ 0.17∗∗∗∗∗∗ 0.15∗∗∗∗∗∗
ωB 9.62 8.99 11.31∗∗∗∗ 12.40∗∗∗∗∗∗ 14.42∗∗∗∗∗∗ 55.51∗∗∗∗∗∗
x1 4.20 4.17 9.29∗∗∗∗∗∗ 9.29∗∗∗∗∗∗ 9.29∗∗∗∗∗∗ 4.48∗∗∗∗∗∗
zA1 1.55 1.54 3.44∗∗∗∗∗∗ 3.44∗∗∗∗∗∗ 3.44∗∗∗∗∗∗ 1.66∗∗∗∗∗∗
zN1 0.10 0.09 0.13∗∗∗∗∗∗ 0.17∗∗∗∗∗∗ 0.18∗∗∗∗∗∗ 0.39∗∗∗∗∗∗
zG1 0.00 0.00 0.00 0.00∗∗∗ 0.00∗ 0.00∗∗∗∗∗∗
zB1 1.04 0.99 1.24∗∗∗∗∗∗ 1.29∗∗∗∗∗∗ 1.35∗∗∗∗∗∗ 3.92∗∗∗∗∗∗

Notes: RMSE of the ML estimates from estimates to the true likelihood from 1032 samples, relative to the
prior range in %. Likelihood specifications are as follows: L 1 – inverse likelihood conditioned solely on
y1; L 1

p – maximization includes the initial endogenous state; L 1,x=Ex – initial endogenous state set to the

unconditional first moment; L 10,x=Ex and L 20,x=Ex – same, but with the first 10 and 20 periods burned,
respectively; 103 Particles – 103 particles used, drawn from the states’ stationary distribution. Significance
levels: ∗, ∗∗, ∗∗∗ denote p-values of 0.05, 0.01, and 0.001 for the null hypothesis that the estimate equals
that from L 1; ∗, ∗∗, ∗∗∗ indicate the same significance levels for the null that the estimate equals that from
L 1

p . Global maximization used 200 stage-one points and 1,000 trial points (default), particle filter estimates
are done via swarm particles optimization (100 particles—default).
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Table 3: RMSFE of ML estimates from conditional likelihoods to true ML esti-
mates (in percentage points of the steady state)

L 1 L 1
p L 1,x=Ex L 10,x=Ex L 20,x=Ex 103 Particles

ŷT+1 0.04∗∗∗ 0.05∗∗∗ 0.07∗∗∗∗∗∗ 0.07∗∗∗∗∗∗ 0.07∗∗∗∗∗∗ 0.10∗∗∗∗∗∗
ĉT+1 0.04∗∗ 0.04∗∗ 0.05∗∗∗∗∗∗ 0.05∗∗∗∗∗∗ 0.06∗∗∗∗∗∗ 0.12∗∗∗∗∗∗
îT+1 0.19∗∗∗ 0.22∗∗∗ 0.25∗∗∗∗∗∗ 0.27∗∗∗∗∗∗ 0.29∗∗∗∗∗∗ 0.62∗∗∗∗∗∗
n̂T+1 0.04∗∗ 0.05∗∗ 0.05∗∗∗∗∗∗ 0.06∗∗∗∗∗∗ 0.07∗∗∗∗∗∗ 0.14∗∗∗∗∗∗
ŷT+4 0.14∗∗∗ 0.16∗∗∗ 0.23∗∗∗∗∗∗ 0.23∗∗∗∗∗∗ 0.25∗∗∗∗∗∗ 0.33∗∗∗∗∗∗
ĉT+4 0.13∗ 0.14∗ 0.17∗∗∗∗∗∗ 0.18∗∗∗∗∗∗ 0.19∗∗∗∗∗∗ 0.38∗∗∗∗∗∗
îT+4 0.65∗∗∗ 0.71∗∗∗ 0.84∗∗∗∗∗∗ 0.92∗∗∗∗∗∗ 0.97∗∗∗∗∗∗ 2.00∗∗∗∗∗∗
n̂T+4 0.15∗ 0.16∗ 0.18∗∗∗∗∗∗ 0.20∗∗∗∗∗∗ 0.22∗∗∗∗∗∗ 0.45∗∗∗∗∗∗

Notes: One and four periods RMSFE of the ML estimated models to estimates from the true likelihood es-
timated model from 1024 samples, in percentage points of the respective variable’s steady state. Likelihood
specifications are as follows: L 1 – inverse likelihood conditioned solely on y1;L 1

p – maximization includes the

initial endogenous state; L 1,x=Ex – initial endogenous state set to the unconditional first moment; L 10,x=Ex

and L 20,x=Ex – same, but with the first 10 and 20 periods burned, respectively; 103 Particles – 103 particles
used, drawn from the states’ stationary distribution. Significance levels: ∗, ∗∗, ∗∗∗ denote p-values of 0.05,
0.01, and 0.001 for the null hypothesis that the estimate equals that from L 1; ∗, ∗∗, ∗∗∗ indicate the same
significance levels for the null that the estimate equals that from L 1

p .

(T = 400) samples.7 The results of the estimates are presented in Appendix Tables 11 and

12, and the forecasts in Appendix Tables 13 and 14. The findings largely replicate those dis-

cussed. Notably, in the short sample, the particle filter provides statistically significantly

better estimates for ρG and achieves numerically superior, albeit not statistically signifi-

cant, results for k1 and zA. In all other cases—including the forecasts—estimates based on

conditioning on the first observation statistically significantly outperform all other estima-

tions.

Finally, Table 4 compare the time needed for one maximization. Except for the particle

filter, it turns out that the Kalman filter is most time consuming. The Kalman filter esti-

mates, the benchmark, need around 4 times as long as the second most time consuming

evaluation— L 1. The maximization using L 1 needs around twice as long as L 1
p which

needs around 30% longer than the likelihood specifications where the initial endogenous

state set to the unconditional first moment. However, the computation is executed on

single cores and the evaluation L 1 is parallelizable, which can decrease the time needed

significantly. The particle filter maximization takes to longest time, partly twice as long

as the Kalman filter maximizations. While the particle filter is also parallelizable, the ini-

7The T = 100 sample consists of the first 100 periods of the T = 200 sample, which in turn corresponds to
the first 200 periods of the T = 400 sample.
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Table 4: Average maximization time per sample

Kalman L 1 L 1
p L 1,x=Ex L 10,x=Ex L 20,x=Ex 103 Particles

T=100 02:02 00:28 00:17 00:13 00:14 00:14 2:37
T=200 03:13 00:41 00:22 00:17 00:18 00:18 5:30
T=400 04:54 01:02 00:29 00:24 00:24 00:25 11:37

Notes: Time on one core of an AMD Epyc 7313 (Milan) (3.0GHz). Format: MM:SS. Global maximization used 200 stage-one
points and 1,000 trial points (default) on 1024 samples, particle filter estimates are done via swarm particles optimization
(100 particles—default). Likelihood specifications are as follows: L 1 – inverse likelihood conditioned solely on y1; L 1

p –

maximization includes the initial endogenous state; L 1,x=Ex – initial endogenous state set to the unconditional first moment;
L 10,x=Ex and L 20,x=Ex – same, but with the first 10 and 20 periods burned, respectively; 103 Particles – 103 particles used,
drawn from the states’ stationary distribution.

tialization of k0 was directly drawn from the stationary Gaussian distribution, which in

non-linear cases requires a time-consuming burn-in phase.

Posterior distribution I continue with the evaluation of the posterior’s mean, quartiles,

as well as the first and the last decile from the various likelihoods. I consider the differ-

ences between the posterior from the analytically evaluated exact likelihood and from the

expected likelihood conditioned solely on Y1 (L 1, eq. (3)), from a specification which

includes drawings from k1 using the likelihood conditioned solely on Y1 (L 1
f , eq. (4)),

from the likelihood conditioned on k1 = Ek (L 1,x=Ex , eq. (1)), and an approximation of

the exact likelihood using 103 particles.8

To evaluate the posterior, I use the last 100,000 draws out of 150,000 from a bench-

mark Random Walk Metropolis Hastings sampler (Herbst and Schorfheide, 2015, Chapter

4) deploying a multivariate Gaussian proposal distribution. For differentiable kernels, the

corresponding unscaled covariance equals the negative of the inverse Hessian at the ker-

nel’s mode, which also correspond to the initial draw. In the other case, for the particle

filter, I use the covariance from the first 10,000 draws, which are sampled using the prior’s

variance and the initial draw equal the prior’s mean.9 I scale the proposal distribution by

0.252 during the burn-in phase and re-scale after the burn-in once to approach an accep-

tance of rate of 33% as a rate between 20% and 40% is considered to be optimal (Herbst

and Schorfheide, 2015, Chapter 4). Figure 2 display the distribution of the acceptance

rates of the samplings from the benchmark kernel—the analytical exact likelihood—and

shows a successful scaling given the goal. I present here only results from simulations

8The results from the likelihood conditioned on k1 = Ek and a burn-in phase of the maximum likelihood
analysis indicates that burning brings no advancement. I evaluated this and it holds also for the whole
posterior, which is why I omit to present the results here for reasons of clarity and comprehensibility.

9I got better results using the prior’s mean than using the mode evaluated with a derivative free optimizer.

17



Figure 2: Acceptance rate, sampler with Kalman filter
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Table 5: Excluded posterior samples

Kalman L 1 L 1
f L 1,x=Ex 103 Particles Nsuc/N

1.46% 2.34% 10.55% 2.64% 2.05% 864/1024
Notes:% of samples are discarded due to non-optimal acceptance rate. These samples are than

excluded across all likelihood specifications. Nsuc number of overall successful posterior evaluations.
Likelihood specifications: L 1 – inverse likelihood conditioned solely on Y1; L 1

f – posterior draws

include the initial endogenous states;L 1,x=Ex – initial endogenous state set to its unconditional first
moment, 103 Particles – 103 particles used, drawn from the states’ stationary distribution.

where the acceptance rate of the draws lie within the range of 20% and 40%. Discarded

simulation are discarded in all likelihood specifications and in the Appendix A.1 the results

from all draws.

Figure 5 shows the exclusion results. The highest rate of unsatisfactory acceptances

occurs under the specification that draws includes k1 using the likelihood conditioned

only on Y1 (L 1
f ), with a failure rate of nearly 11%. All other specifications fail less than

3% of the time, resulting in a total of 864 successful samples across all specifications,

corresponding to an overall success rate of 84.3%.

Figure 3 presents the results for n∗ and σ∗. For n∗, the expected likelihood conditioned

solely on Y1 (L 1) performs best, followed closely by the specification that includes draw-

ings from k1 using the likelihood conditioned on Y1 (L 1
f ). The likelihood conditioned on

k1 = Ek and Y1 yields values approximately 10% higher than the best-performing specifica-

tion. The approximation based on 103 particles performs nearly twice as poorly as the best

approach, although the difference is still smaller than in the maximum likelihood estima-
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tion. Forσ∗, the expected likelihood conditioned solely on Y1 again delivers the most accu-

rate results, while the specifications using drawings from k1 and conditioning on k1 = Ek

show similar performance across the evaluated measures. The particle-based approxi-

mation with 103 particles performs noticeably worse than the best-performing method,

though the magnitude of the difference is smaller than that observed for n∗.

Figure 4 presents the results for the autoregressive parameters. For ρA, the expected

likelihood conditioned solely on Y1 and the specification that includes drawings from k1

perform best, with the particle-based approximation using 103 particles trailing behind by

more than 25%. There is a substantial gap to the specification conditioned on k1 = Ek,

which performs three to six times worse. ForρN andρG, the conditional filters yield similar

RMSEs, with the particle-based approach achieving slightly lower errors—approximately

one third smaller. However, all methods result in relatively small errors overall. For ρB,

the expected likelihood conditioned solely on Y1, the specification using drawings from k1,

and the particle-based approximation perform similarly and outperform the method based

on conditioning on k1 = Ek, whose RMSE is about 10% larger.

The RMSE of the posteriors’ of the innovations’ standard deviations is reported in Fig-

ure 5. The ordering of results for ωA mirrors that of ρA, although the differences across

specifications are smaller. Interestingly, forωN , the particle-based approximation with 103

particles performs significantly worse, with an RMSE roughly 50% higher than the best-

performing specification—the specifications with likelihoods conditioned on Y1, closely

followed by the specification conditioned on Ek. For ωG, the results resemble those of

ρG, but with a smaller differences across specifications; the approach using drawings from

k1 performs slightly worse for larger quantiles. For ωB, the particle-based approximation

underperforms substantially, yielding RMSE values about 100% higher than those from

the conditional specifications, which all perform similarly.

Figure 10–12 in the appendix reports results when no samples are discarded. In this

setting, the particle-based approximation using 103 particles performs worse in all cases

except for ρA, where it still yields noticeably poorer results compared to the one presented

here. Moreover, for both σ and ωB, the specification drawing from k1 also exhibits a

decline in performance, becoming worse relative to the conditional likelihood alternatives.

Other differences are not substantial enough to warrant discussion.
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Figure 3: Posterior errors of estimated steady state and behavioral parameters (% of prior range)
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(a) RMSE of n∗
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(b) RMSE of σ
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Notes: RMSE of the posterior estimates to the true posterior kernel from 864 samples, relative to the prior range in % (T = 200).
The likelihood specifications are as follows: L 1 – inverse likelihood conditioned solely on y1; L 1

f – posterior draws include the initial

endogenous states; L 1,x=Ex – initial endogenous state set to its unconditional first moment, 103 Particles – 103 particles used, drawn
from the states’ stationary distribution. A Random-Walk Metropolis-Hastings sampler is used with 150,000 draws, where the first 1/3
of the draws are discarded as burn-in.

Table 6: Sampling time per sample

Kalman L 1 L 1
f L 1,x=Ex 103 Particles

13:34 03:33 01:55 01:46 93:04
Notes: Time on one core of an AMD Epyc 7313 (Milan) (3.0GHz). Format:

MM:SS. Sampling time excludes the estimation of the kernel’s mode. The like-
lihood specifications are as follows: L 1 – inverse likelihood conditioned solely
on y1; L 1

f – posterior draws include the initial endogenous states; L 1,x=Ex –

initial endogenous state set to its unconditional first moment, 103 Particles –
103 particles used, drawn from the states’ stationary distribution.
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Figure 4: Posterior errors of estimated autoregressive coefficients (% of prior range)
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(a) RMSE of ρA
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(b) RMSE of ρN
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(c) RMSE of ρG
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(d) RMSE of ρB

L 1 L 1
f L 1,x=Ex 103 Particles

Notes: RMSE of the posterior estimates to the true posterior kernel from 864 samples, relative to the prior range in % (T = 200).
The likelihood specifications are as follows: L 1 – inverse likelihood conditioned solely on y1; L 1

f – posterior draws include the initial

endogenous states; L 1,x=Ex – initial endogenous state set to its unconditional first moment, 103 Particles – 103 particles used, drawn
from the states’ stationary distribution. A Random-Walk Metropolis-Hastings sampler is used with 150,000 draws, where the first 1/3
of the draws are discarded as burn-in.
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Figure 5: Posterior errors of estimated innovation’s standard deviation (% of prior range)
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(a) RMSE of ωA
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(b) RMSE of ωN
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(c) RMSE of ωG
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(d) RMSE of ωB
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f L 1,x=Ex 103 Particles

Notes: RMSE of the posterior estimates to the true posterior kernel from 864 samples, relative to the prior range in % (T = 200).
The likelihood specifications are as follows: L 1 – inverse likelihood conditioned solely on y1; L 1

f – posterior draws include the initial

endogenous states; L 1,x=Ex – initial endogenous state set to its unconditional first moment, 103 Particles – 103 particles used, drawn
from the states’ stationary distribution. A Random-Walk Metropolis-Hastings sampler is used with 150,000 draws, where the first 1/3
of the draws are discarded as burn-in.
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2.3 Discussion

In general, the inversion filter has two major limitations: it requires a one-to-one (in-

vertible) policy function, and because of this, the number of observables must equal the

number of exogenous states. The initialization proposed here introduces a third condi-

tion: the number of endogenous states must not exceed the number of exogenous states.

In the following, I will discuss these limitations with reference to economic applications

and propose possible remedies.

First, regarding the one-to-one policy function that guarantees the unique mapping from

controls to states: under standard conditions—such as strict concavity of the objective with

respect to the controls and that the feasible set defined by the constraints is convex—and

given that the number of observables equals the number of exogenous states, the policy

function is one-to-one. Hence, the inversion filter can be applied to a wide range of prob-

lems; however, one should exercise due caution when dealing with non-standard problems.

Holden (2023), for example, discuss under which conditions many-to-one mappings can

arise due to a occasionally-binding zero lower bound on the policy rates. Cuba-Borda et al.

(2019) propose that for many-to-one policy functions, one can consider all roots and then

sum over all possible solutions in the likelihood. While this approach can quickly lead to

numerical overflow, it remains feasible for occasional many-to-one mappings.

A common problem is spurious roots. Spurious roots can arise when approximating the

policy function, particularly in higher-order local expansions. For example, when approx-

imating the policy function of a model with n exogenous states using an m-th order Taylor

series, the inversion of the local expansion may yield up to mn candidate roots. If the pol-

icy function is one-to-one, only one of these roots corresponds to the true solution of the

original system; the others are spurious. In such cases, the Lagrange Inversion Theorem

provides a useful tool.

The Lagrange Inversion Theorem gives a formal method for locally inverting an analytic

function. Specifically, for a function defined as y = f (z), the theorem allows the construc-

tion of a Taylor series for the inverse function z = f −1(y) around a point where f is locally

invertible, guaranteeing the correct identification of the true root in its neighborhood.

An additional check for the true root can be obtained from the residuals of the static

functions of the model that involve non-observed controls. For the true root, these resid-

uals are close to zero because all equilibrium conditions are satisfied, whereas spurious

roots produce non-negligible residuals.
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Regarding the second requirement—that the number of observables equals the number

of exogenous states—we can either introduce measurement errors to increase the number

of observables and integrate over these errors, or, if there are more exogenous states than

observables, integrate over the additional exogenous states as we do for the initial en-

dogenous states. Both approaches are feasible, as the distributions of measurement errors

and exogenous states are given. Note that when Monte Carlo integration techniques are

employed, the former approach resembles a particle filter, with the inversion acting as an

importance sampler.10 However, further research is needed to explore these possibilities.

When the number of endogenous states exceeds the number of exogenous states, the

Gram matrix J⊤J is necessarily rank-deficient, precluding its use for volume scaling. How-

ever, this specific scenario is rare in applied macroeconomics. Consequently, this limitation

does not affect the practical applicability of the inversion filter for a majority of models.

3 APPLICATIONS

3.1 Monetary Business Cycle Accounting for the COVID-19 Recession and the

post-pandemic inflation in the EMU and US

As a first application, I conduct MBCA, following the approach of Šustek (2011), to ana-

lyze the COVID-19 recession and the subsequent post-pandemic inflation in both the EMU

and the United States. MBCA extends the standard Business Cycle Accounting framework

introduced by Chari et al. (2007) by incorporating inflation, πt , into the analysis.

Business Cycle Accounting attributes deviations from a frictionless benchmark model to

a set of so-called wedges, which serve as reduced-form distortions of structural frictions

and shocks. The real distortions in MBCA correspond to those derived from the distorted

first-order conditions presented in the Monte Carlo study (Equations (6)–(11)), with the

exception of the Euler equation for capital. Here, the wedge in the capital Euler equation

is equivalent to an investment tax, exp(zI t)−1. Accordingly, the Euler equation for capital,

takes the form:

exp(zI t) = βEt

�

�

ct+1

ct

�σ �1− nt+1

1− nt

�σ(1−θ )�

(1−δ)exp(zI t+1) +α
yt+1

kt+1

�

�

.

10Fehrle et al. (2025) approximate the inverse function as importance sampler in a bootstrap filter applica-
tion. See additionally also the discussion of Herbst and Schorfheide (2015, Chapter 8) on the condition-
ally optimal importance distribution.
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In addition to the real distortions, MBCA introduces a wedge in the Euler equation for

bonds zBt . Furthermore, the central bank is assumed to follow a distorted Taylor rule,

capturing monetary policy deviations from the monetary policy rule. The distorted bond

Euler equation and Taylor rule read

exp(zBt) = βEt

�

�

ct+1

ct

�σ �1− nt+1

1− nt

�σ(1−θ ) rt

πt+1
exp(zBt+1)

�

,

rt = r∗
�

1+πt

1+π∗

�ψπ
�

yt

y ss

�ψy

exp(zRt),

where rt denotes the nominal interest rate, r∗, π∗, and y ss represent the central bank’s

steady-state or target values for the nominal rate, inflation, and output, respectively, and

zRt captures deviations from the central bank’s rule-based policy. These two equations

account for the nominal (monetary) distortions in the model. Lastly, to ensure consistency

in per capita terms, the household’s time preference rate is adjusted for population growth

gpop, yielding an effective discount factor of β ′ = β/gpop.

The specification of the evolution of the distortions—the wedges—is more elaborate

than for the zi t in the Monte Carlo experiment. First, each wedge consists of a long-run

(steady-state) component and a time-varying component: z j t = zss
j + z̄ j t . Second, the time-

varying component z̄ j t follows a first-order vectorautoregressive process, implying that the

distortions interact over time.

3.1.1 Calibration

Table 7 summarizes the parameter values used for the EMU and US economies. The cal-

ibration for the US follows Šustek (2011), with one notable exception: I increase the

effective discount factor β ′ from 0.99 to 0.995 to better reflect the low interest rate envi-

ronment during the 2010s. Growth rates, output shares, and the long-run average working

time are based on my own calculations.

For the EMU, I depart further from Šustek (2011) by adjusting two key parameters: the

capital elasticity of output and the depreciation rate are set to α = 0.376 and δ = 0.0117

to align with the empirical estimates reported by ECB (2023) and ECB (2006), respectively.
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Table 7: Calibration

Parameter EMU US

Capital elast. α 0.376 0.35
Capital depr. rate δ 0.0117 0.0118
TR infl. target (p.a.) π∗ 2% 2%
TR infl. elast. ψπ 1.5 1.5
TR cycle elast. ψy 0.125 0.125
Time preference β ′ 0.995 0.995
Risk aversion σ 1 1
St.st. work nss 0.125 0.151
St.st. infl. πss 0.125 0.151
Population growth gpop 1.001 1.002
Consumpt. growth gc 1.007 1.005
Invest. growth gi 1.008 1.006
Avg. consumpt. share c/y 0.55 0.66
Avg. invest. share i/y 0.22 0.18

Notes: External determined parameters and long-run properties.
Remaining parameters are determined endogenously by the model
or via ML estimation.

3.1.2 Implementation

To align the data with the model, I largely follow Fehrle and Huber (2023). First, I ac-

count for differing growth rates among the observables and adjust the model accordingly

to ensure internal consistency. The resulting system of equations in stationary variables

is presented in Appendix A.2.1. Second, I determine the long-run wedge components en-

dogenously using steady-state relationships and a calibration exercise based on the long-

run shares of consumption and investment in output. The parameters of the mean-zero

autoregressive process are estimated via ML estimation. Following Šustek (2011), I use

output, private consumption, gross fixed investment, hours worked, and the inflation rate

as observables. Note that with these observables, the variable gt captures all expenditures

not classified as gross fixed investment or private consumption. As a result, it represents a

total residual demand wedge rather than government consumption specifically. The EMU-

19 countries (excluding Croatia and Bulgaria) represent the EMU, and Appendix A.2.2 lists

the data sources for both the EMU-19 and US data.

Regarding the model solution, I employ a weighted residual method via collocation, as

described in Heer and Maußner (2024, Chapter 5) to approximate the policy functions for

labor and inflation. Specifically, I use Chebyshev polynomials on a Smolyak sparse grid
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of second degree, resulting in a 2 × 113 polynomial series. To approximate the agent’s

expectations, I implement the CUT-4 cubature rule from Adurthi et al. (2018).

I estimate the autoregressive process with a model solution over a grid spanning 10% of

the deterministic steady-state capital stock and 1.5 times the unconditional standard de-

viation of the exogenous states driven from the the autoregressive process. It is important

to note that the states of efficiency zAt , labor wedge zN t , residual wedge zGt , and monetary

wedge zRt can be measured independently of the model’s solution and thus are measured

independent of the state-space domain. The remaining wedges zI t and zBt are recovered

each period using a root-finding algorithm. The Jacobian of the mapping from innovations

to the observations is derived analytically from the polynomial series.

I choose a likelihood that is conditioned solely on the initial observations—L 1. To ap-

proximate the integral over the initial endogenous state, I employ Gauss-Hermite quadra-

ture nodes derived from the linear approximation of the endogenous state. The corre-

sponding quadrature weights are obtained from the likelihood conditional on each node-

specific endogenous state. The Jacobian required for transforming exogenous to endoge-

nous initial states is obtained via numerical differentiation.

Afterward, I adjust the grid in such way that the extrema of the realized states over

the whole sample for the EMU and over the COVID-19 period for the US align with the

extrema of the state space. This ensures that the solution is accurately computed during

the pandemic period.

Figure 6 plots the Euler residuals at three different solutions: (i) the states measured

during likelihood evaluation using the grid applied in that evaluation (dashed line), (ii)

the final measured states using the grid employed for the final model solution, and (iii)

the final measured states using a first-order perturbation around the deterministic steady

state (dotted).

The figure illustrates that, in normal times in the EMU, i.e., for most of the sample

period, the solution used for the likelihood evaluation exhibits greater accuracy than the

final solution. However, during the peak of the COVID-19 recession, the accuracy of the

likelihood-based solution deteriorates, though it still outperforms the average accuracy of

the linear solution by half an order of magnitude, and remains over an order of magnitude

more accurate than the linear solution during this period. For the US, the model solutions

used for the likelihood evaluation outperform the linear solution even more significantly.

Resolving the model on the adjusted grid leads to additional improvements in accuracy

during the COVID-19 period, resulting in a several orders of magnitude higher accuracy
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Figure 6: Euler residuals
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Notes: absolute Euler residuals in log10 scale from capital and bond Euler equations. Linear: Perturbation at deterministic steady
state.

than the linear perturbation around the deterministic steady state during the COVID-19

recession.

Finally, I assess the influence of each wedge over the period under consideration by

calculating the forecast error of the full model and comparing it to versions of the model

where all wedges, except one at a time, are held fixed at their steady-state values, while

allowing the underlying states to evolve. This approach isolates the impact of individual

wedges while preserving the agents’ expectations about the wedge’s fluctuations.

3.1.3 Results

Figure 7 presents the results of the exercise by plotting the forecast errors of the full model

alongside model versions in which all wedges, except one, are held fixed at their steady-

state values over the period 2020 – 2024. Horizontally, the left-hand panels display results

for the EMU, while the right-hand panels correspond to the US. Vertically, the upper panels

focus on the business cycle, measured by output yt , and the lower panels on inflation, πt .

In both economies, the labor wedge accounts excessively for the COVID-19 recession,

while the investment wedge exhibits a strongly countercyclical behavior. The efficiency

wedge contributes partially to the recession in the EMU but appears neutral or rather

countercyclical in the US. The impact of the residual demand wedge is minor in both

economies. According to the classical dichotomy, the bond and monetary wedges do not

affect real variables in the model.

The labor wedge also exerts the greatest inflationary pressure on both economies during
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the peak of the COVID-19 pandemic. In the EMU, the investment and efficiency wedges

additionally act inflationary during this phase, whereas their influence is minor in the US.

The residual demand wedge similarly has only a minor impact in both regions during this

period.

During the pandemic, the bond and monetary wedges exert strong deflationary ef-

fects, particularly in the EMU, where deflationary tendencies dominate. As the economies

move through and beyond the recovery phase, inflationary pressure from real economy

wedges diminishes, while that from nominal wedges increases, especially from the mone-

tary wedge. The monetary wedge alone accounts excessively for the post-pandemic infla-

tion surge in both economies. Notably, the investment wedge also contributes significantly

to the inflation peak in the US.

Table 8 presents the∆-statistics (Fehrle and Huber, 2023) for output yt and inflation πt .

These statistics measure the relative cumulative contribution of each individual wedge to

the realized fluctuations, where here fluctuations are continued to be quantified as forecast

errors.

The results largely corroborate the previous illustrated results. In the EMU, the la-

bor wedge contributes most significantly to the business cycle, followed by the efficiency

wedge, while the investment wedge acts strongly countercyclically. In the US, the labor

wedge alone accounts for the bulk of the cycle, with the efficiency wedge playing a coun-

tercyclical role.

With respect to inflation, in the EMU the labor and efficiency wedges—both real wedges—

are the main contributors, followed by the monetary wedge. In the US, the labor, invest-

ment, and monetary wedges contribute similarly to inflation, whereas the efficiency wedge

exhibits a deflationary effect.

3.2 Uncertainty shocks and the Great Moderation

Here, I build on the stochastic general equilibrium model developed by Basu and Bundick

(2017). This model produces sizable comoving fluctuations induced by uncertainty shocks

and is therefore well suited to analyze their macroeconomic effects.

3.2.1 Framework

The model features optimizing households and firms, and a central bank that follows a

Taylor-type monetary policy rule to stabilize inflation and offset adverse demand fluc-
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Figure 7: Monetary Business Cycle Accounting
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Notes: FE: forecast errors, Realized: all wedges on, zA: only efficiency wedge on, zN : only labor wedge on, zG : only residual wedge
on, zI : only investment wedge on, zB: only bond wedge on, zR: only monetary weddge on.

Table 8: MBCA ∆-statistics

BCA (yt)

zAt zN t zGt zI t zBt zRt

EMU 1.26 1.52 -0.04 -1.89 0.00 0.00
US -1.86 3.27 -0.84 0.23 0.00 0.00

MBCA (πt)

zAt zN t zGt zI t zBt zRt

EMU 1.14 1.48 -0.04 0.20 -2.15 0.75
US -0.35 0.65 -0.25 0.57 0.30 0.54

Notes: ∆-statistics report the accumulated forecast error induced by a single
wedge z j t in relation to the realized accumulated forecast error.
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tuations. Nominal rigidities follow the quadratic price adjustment cost framework of

Rotemberg (1982). The baseline model includes two exogenous sources of variation: (i)

household discount rate shocks and (ii) technology shocks. Additionally, the discount rate

shock’s innovations have a time-varying second moment, the uncertainty shock.

Households are modeled with Epstein-Zin recursive preferences, allowing the separa-

tion of risk aversion from the intertemporal elasticity of substitution. Additional to price

adjustment costs, firms face Jermann (1998) capital adjustment costs. However, firms can

choose their capital utilization in addition to the capital and labor input.

I introduce a residual demand shock, representing the combined effects of government

consumption and net exports, to capture additional variation in aggregate demand be-

yond domestic private-sector behavior. Furthermore, I specify all stochastic processes log-

normal distributed rather than, as Basu and Bundick (2017), normal, avoiding negative

states. Finally, the output gap in the Taylor rule is measured relative to the determinis-

tic trend rather than to previous output, aligning with the model’s balanced-growth-path

assumption.

3.2.2 Estimation

I estimate the same parameters as those used for impulse response function matching of

Basu and Bundick (2017). Specifically, I estimate all shock process parameters, namely the

(unnormalized) standard deviations of the innovations σi and the first-order autoregres-

sive coefficients ρi, with i = G for residual demand shocks, i = Z for technology shocks,

i = A for discount rate shocks, and i = v for shocks to the standard deviation of the dis-

count rate innovations. In addition, I estimate the elasticity of capital adjustment costs,

φK .

Column two to four of Table 9 presents my choice of the priors’ distribution. All other

parameters follow Basu and Bundick (2017), except for the intertemporal elasticity of

substitution, which I increase toψ= 0.99. The priors and the calibration ensures a sizable

impact of uncertainty shocks at the prior’s mean, while producing also only minor impact

within likely ranges of the prior.

I use quarterly US data on output, consumption, investment, and hours worked from

1985 – 2019. Appendix A.3.2 lists the data sources. Posterior draws are from a Sequential

Monte Carlo Algorithm with N = 2,500 particles (Herbst and Schorfheide, 2015, Algo-

rithms 8, 9, and 10.). The likelihood tempering schedule follows (n/Nφ)2, n = 1, . . . , Nφ,
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Table 9: Prior and posterior distribution

Prior Posterior

Parameter Prior Distribution Mean Standard deviation Mean Standard deviation

φK IG 5 Mean/5 4.83 Mean/36
ωZ IG 0.0015 Mean/5 0.015 Mean/10
ωG IG 0.001 Mean/5 0.009 Mean/8
ωA IG 0.004 Mean/5 0.0054 Mean/20
ωv IG 0.25 Mean/5 0.1029 Mean/10
ρZ B 0.98 0.005 0.71 0.027
ρG B 0.8 0.05 0.99 0.002
ρA B 0.8 0.05 0.95 0.003
ρv B 0.8 0.05 0.89 0.012

Notes: IG : Inverted Gamma Distribution, B: Beta Distribution. Posterior draws from a SMC Algorithm with N = 2,500
particles (Herbst and Schorfheide, 2015, Algorithms 8, 9, and 10.). The likelihood tempering schedule follows (n/Nφ)2 with
Nφ = 200. Resampling takes place for effective sample sizes lower N/2. The sampler includes additional the endogenous states
capital and discount rate in a separated block. The states have uninformative priors.

Nφ = 200. Resampling takes place for effective sample sizes lower N/2. The sampler

treats the endogenous states, namely capital and the discount rate, in a separate block

estimated via likelihood functionL 1
f (eq. (4)). These states are assigned non-informative

priors. The Jacobian required for transforming exogenous to endogenous initial states is

obtained via numerical differentiation. To verify the robustness of the results, I re-estimate

the model using the profile likelihood L 1
p (eq. (5)). Appendix A.3.3 presents the results.

The innovations are identified by inverting the observation equation for given endoge-

nous states using the Lagrange Inversion Theorem. I use a first-order truncated series

expansion around the known within-period values of the endogenous states and the ex-

pected values of the exogenous states, which guarantees a unique local mapping in the

neighborhood of the expected states.11 The actual solution uses a third-order perturba-

tion solution based on CoRRAM with automatic differentiation (Heer and Maußner, 2024,

Chapter 3). The Jacobian of the mapping from innovations to observations is derived

analytically from the third-order Taylor series.

11While higher-order series expansions are possible without significant computational cost, my experience
indicates that for rare but large innovations, the series can diverge far from the expansion point, pro-
ducing non-convergent terms and less accurate results than the first-order approximation. Moreover,
note that the first-order inversion does propagate the effects of stochastic uncertainty. This expansion
approach is similar to Kollmann (2017), who guarantee a unique mapping from y to z by replacing
higher-order terms in the exogenous states with their expected values.
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3.2.3 Results

The last two columns of Table 9 present the first two moments of the posterior. Notably,ωZ

andωG increase from their prior means, whileωv decreases. Persistence parameters show

contrasting revisions: ρZ declines markedly, whereas ρG and ρA move close to one. Across

parameters, except for ρz, posterior standard deviations are smaller than prior ones, high-

lighting increased precision, indicating, among others, that the data meaningfully inform

the model.

Figure 8 Panel (a) plots the data used as inputs alongside the model predictions at the

posterior means based on the filtered states. Since the state estimation relies on a first-

order truncation of the Taylor series expansion of the inverse function, the differences

between the data and predictions indicate the loss of accuracy due to this approximation.

These differences are barely visible in Panel (a). Panel (b) presents the absolute differences

on a log10 scale from Panel (a). The time series for output, consumption, and hours worked

show differences on the order of 10−4, while investment exhibits discrepancies an order of

magnitude larger.

In Figure 14, I decompose the business cycle, measured as fluctuations in output, into

contributions from individual shocks using the model at the posteriors’ mean. The de-

composition allows one shock to fluctuate at a time, isolating its effect. I also present the

interactions between shocks, capturing movements in output that are not explained by

any single shock alone. Finally, the sum of the individual shocks and their interactions

is presented—the actual data. Table 10 quantifies the decomposition by reporting the

respective inverse mean squared error normalized to the sum of all inverse errors.

First and most remarkable, the uncertainty shock accounts for nearly the entire busi-

ness cycle, whereas the productivity and discount rate shocks mainly contribute to low-

frequency fluctuations. Regarding the Great Recession, rising uncertainty strongly de-

presses output, while productivity and, in particular, the residual demand shock act coun-

tercyclically. Notably, a decrease in productivity depresses output in the aftermath of the

Great Recession further.

Repeating the exercises in Appendix A.3.3 using the profile likelihood confirms the ro-

bustness of the results regarding the likelihood specification.
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Figure 8: Prediction residuals
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Figure 9: Business cycle decomposition
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Table 10: Normalized inverted mean
squared errors

Z G A v Interaction

0.04 0.02 0.02 0.89 0.03
Notes: Normalized inverted mean squared error: inverted

mean squared error normalized to accumulated inverted
mean squared errors.
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4 CONCLUSION

The initial endogenous state distribution is crucial for inverse filtering in nonlinear state-

space and dynamic latent variable models. In this study, I show how this distribution,

which is mostly unknown, can be derived under various conditions from initial observa-

tions using the change-of-variables theorem. This approach improves the efficiency of state

estimation using the inverse filter. Moreover, when the filter is used to construct the likeli-

hood, it also enhances the efficiency of both Frequentist and Bayesian parameter inference.

Specifically, it enables the computation of likelihoods that are conditional solely on the ini-

tial observations and parameters, that treat the initial endogenous states as parameters,

or that profile out the initial endogenous states.

Monte Carlo studies confirm that this approach substantially improves the accuracy of

state estimation and, consequently, enhances both Frequentist and Bayesian parameter in-

ference using inversion filters. In addition, the Monte Carlo analysis confirms the literature

regarding the superior computational efficiency of inversion filters.

A key limitation of the inversion filter is that it requires stricter conditions: the policy

function must be one-to-one, and, thus, the number of observables must equal the number

of exogenous states and, with a appropriate initialization, exceed the number of endoge-

nous states. However, a discussion here concludes that inversion filters remain well-suited

for many applications and also outlines potential remedies to the mentioned limitations.

Using these insights, a first application—a MBCA Analysis with a global solution—

identifies the wedges responsible for the COVID-19-induced recession and the subsequent

inflation surge in both the European Monetary Union and the United States. Across both

economies, the labor wedge dominates the COVID-19 recession, while the investment

wedge behaves countercyclically. The efficiency wedge plays only a limited role. During

the pandemic peak, the labor wedge generates the strongest inflationary pressure, with

investment and efficiency wedges contributing only modestly. The bond and monetary

wedges act inflationary in the aftermath of COVID-19, but suppressed inflation during the

pandemic itself.

A second application measures the impact of uncertainty shocks on the business cycle,

indicating that uncertainty shocks were the main driver of the business cycle during the

Great Moderation (1985 – 2019). In this case, the inversion uses the Lagrange Inversion

Theorem, demonstrating its applicability in solving the problem of spurious roots away

from the expansion point of local solutions.
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Nonlinearities, for example those arising from uncertainty shocks, are discussed as an

important feature of all economies, and large shocks will persist in macroeconomic time

series even in developed economies due to the COVID-19 recession. The improvements

to the inversion filter presented here provide a fast and reliable method for estimating a

wide range of nonlinear models with endogenous states, thereby opening up possibilities

to address research questions that were previously infeasible. Furthermore, the remedies

outlined for the inversion filter’s limitations merit further investigation.
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A APPENDIX

A.1 Further results of the Monte Carlo experiment

Table 11: RMSE of ML estimates from conditional likelihoods to true ML esti-
mates (parameters in % of prior range, T=100)

L 1 L 1
p L 1,x=Ex L 10,x=Ex L 20,x=Ex 103 Particles

n∗ 4.59 5.11∗∗∗∗∗∗ 5.07∗∗∗∗∗∗ 7.01∗∗∗∗∗∗ 8.83∗∗∗∗∗∗ 11.80∗∗∗∗∗∗
σ 16.14 16.04 19.43∗∗∗∗∗∗ 20.94∗∗∗∗∗∗ 23.45∗∗∗∗∗∗ 49.55∗∗∗∗∗∗
ρA 1.82 2.28∗∗∗∗∗∗ 4.10∗∗∗∗∗∗ 4.07∗∗∗∗∗∗ 4.25∗∗∗∗∗∗ 2.35∗∗∗∗∗∗
ρN 1.36 1.36∗∗ 1.37 2.34∗∗∗∗∗∗ 3.13∗∗∗∗∗∗ 1.58∗∗∗∗
ρG 1.54 1.54 1.54 2.06∗∗∗∗∗∗ 2.73∗∗∗∗∗∗ 1.24∗∗∗∗∗∗
ρB 2.59 3.01∗∗∗∗∗∗ 2.39 3.00∗∗∗∗∗∗ 3.67∗∗∗∗∗∗ 4.69∗∗∗∗∗∗
ωA 0.06 0.07∗∗∗∗∗∗ 0.12∗∗∗∗∗∗ 0.26∗∗∗∗∗∗ 0.38∗∗∗∗∗∗ 0.22∗∗∗∗∗∗
ωN 0.40 0.45∗∗∗∗∗∗ 0.43∗∗∗∗∗∗ 0.64∗∗∗∗∗∗ 0.80∗∗∗∗∗∗ 0.87∗∗∗∗∗∗
ωG 0.07 0.07 0.07 0.25∗∗∗∗∗∗ 0.37∗∗∗∗∗∗ 0.21∗∗∗∗∗∗
ωB 15.07 14.12 16.37 18.93∗∗∗∗∗∗ 21.46∗∗∗∗∗∗ 54.37∗∗∗∗∗∗
x1 5.34 5.39 9.43∗∗∗∗∗∗ 9.43∗∗∗∗∗∗ 9.43∗∗∗∗∗∗ 4.52
zA1 1.97 1.99 3.49∗∗∗∗∗∗ 3.49∗∗∗∗∗∗ 3.49∗∗∗∗∗∗ 1.67
zN1 0.24∗ 0.26∗ 0.25∗∗∗ 0.33∗∗∗∗∗∗ 0.40∗∗∗∗∗∗ 0.45∗∗∗∗∗∗
zG1 0.00 0.00 0.00 0.00∗∗∗∗∗ 0.00∗∗∗∗∗ 0.00∗∗∗∗∗∗
zB1 1.32 1.18 1.39∗∗∗∗∗∗ 1.58∗∗∗∗∗∗ 1.75∗∗∗∗∗∗ 3.81∗∗∗∗∗∗

Notes: RMSE of the ML estimates to estimates from the true likelihood from 1032 samples, relative to the
prior range in %. Likelihood specifications are as follows: L 1 – inverse likelihood conditioned solely on
y1; L 1

p – maximization includes the initial endogenous state; L 1,x=Ex – initial endogenous state set to the

unconditional first moment; L 10,x=Ex and L 20,x=Ex – same, but with the first 10 and 20 periods burned,
respectively; 103 Particles – 103 particles used, drawn from the states’ stationary distribution. Significance
levels: ∗, ∗∗, ∗∗∗ denote p-values of 0.05, 0.01, and 0.001 for the null hypothesis that the estimate equals
that from L 1; ∗, ∗∗, ∗∗∗ indicate the same significance levels for the null that the estimate equals that from
L 1

p . Global maximization used 200 stage-one points and 1,000 trial points (default), particle filter estimates
are done via swarm particles optimization (100 particles—default).
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Table 12: RMSE of ML estimates from conditional likelihoods to true ML es-
timates (parameters in % of prior range, T=400)

L 1 L 1
p L 1,x=Ex L 10,x=Ex L 20,x=Ex 103 Particles

n∗ 0.73 0.75 1.29∗∗∗∗∗∗ 1.54∗∗∗∗∗∗ 1.77∗∗∗∗∗∗ 9.27∗∗∗∗∗∗
σ 3.24 3.11 5.38∗∗∗∗∗∗ 5.83∗∗∗∗∗∗ 5.87∗∗∗∗∗∗ 55.30∗∗∗∗∗∗
ρA 0.36 0.46∗∗∗∗∗∗ 0.92∗∗∗∗∗∗ 0.85∗∗∗∗∗∗ 0.81∗∗∗∗∗∗ 1.10∗∗∗∗∗∗
ρN 0.34 0.34 0.34 0.47∗∗∗∗∗∗ 0.57∗∗∗∗∗∗ 0.86∗∗∗∗∗∗
ρG 0.52 0.52 0.52 0.59∗∗∗∗∗∗ 0.64∗∗∗∗∗∗ 0.73∗∗∗∗∗∗
ρB 0.48 0.51∗∗∗∗ 0.56∗∗∗∗∗∗ 0.63∗∗∗∗∗∗ 0.67∗∗∗∗∗∗ 3.11∗∗∗∗∗∗
ωA 0.01 0.01∗∗∗∗∗∗ 0.02∗∗∗∗∗∗ 0.06∗∗∗∗∗∗ 0.09∗∗∗∗∗∗ 0.11∗∗∗∗∗∗
ωN 0.05 0.05 0.08∗∗∗∗∗∗ 0.12∗∗∗∗∗∗ 0.14∗∗∗∗∗∗ 0.54∗∗∗∗∗∗
ωG 0.02 0.02 0.02 0.06∗∗∗∗∗∗ 0.08∗∗∗∗∗∗ 0.11∗∗∗∗∗∗
ωB 2.88 2.69∗∗ 4.90∗∗∗∗∗∗ 5.68∗∗∗∗∗∗ 5.93∗∗∗∗∗∗ 54.81∗∗∗∗∗∗
x1 3.71 3.72 8.89∗∗∗∗∗∗ 8.89∗∗∗∗∗∗ 8.89∗∗∗∗∗∗ 4.47∗∗∗∗∗∗
zA1 1.37 1.38 3.29∗∗∗∗∗∗ 3.29∗∗∗∗∗∗ 3.29∗∗∗∗∗∗ 1.65∗∗∗∗∗∗
zN1 0.03 0.03 0.06∗∗∗∗∗∗ 0.07∗∗∗∗∗∗ 0.07∗∗∗∗∗∗ 0.37∗∗∗∗∗∗
zG1 0.00 0.00 0.00 0.00 0.00 0.00∗∗∗∗∗∗
zB1 0.33 0.32 0.67∗∗∗∗∗∗ 0.70∗∗∗∗∗∗ 0.75∗∗∗∗∗∗ 3.83∗∗∗∗∗∗

Notes: RMSE of the ML estimates to estimates from the true likelihood from 1032 samples, relative to
the prior range in %. Likelihood specifications are as follows: L 1 – inverse likelihood conditioned solely
on y1; L 1

p – maximization includes the initial endogenous state; L 1,x=Ex – initial endogenous state set

to the unconditional first moment; L 10,x=Ex and L 20,x=Ex – same, but with the first 10 and 20 periods
burned, respectively; 103 Particles – 103 particles used, drawn from the states’ stationary distribution.
Significance levels: ∗, ∗∗, ∗∗∗ denote p-values of 0.05, 0.01, and 0.001 for the null hypothesis that the
estimate equals that fromL 1; ∗, ∗∗, ∗∗∗ indicate the same significance levels for the null that the estimate
equals that from L 1

p . Global maximization used 200 stage-one points and 1,000 trial points (default),
particle filter estimates are done via swarm particles optimization (100 particles—default).
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Table 13: RMSFE of ML estimates from conditional likelihoods to true ML esti-
mates (in percentage points of the steady state, T=100)

L 1 L 1
p L 1,x=Ex L 10,x=Ex L 20,x=Ex 103 Particles

ŷT+1 0.08∗∗∗ 0.10∗∗∗ 0.13∗∗∗∗∗∗ 0.14∗∗∗∗∗∗ 0.16∗∗∗∗∗∗ 0.14∗∗∗∗∗∗
ĉT+1 0.07∗∗∗ 0.08∗∗∗ 0.09∗∗∗∗∗∗ 0.10∗∗∗∗∗∗ 0.12∗∗∗∗∗∗ 0.15∗∗∗∗∗∗
îT+1 0.38∗∗∗ 0.45∗∗∗ 0.48∗∗∗∗∗∗ 0.55∗∗∗∗∗∗ 0.64∗∗∗∗∗∗ 0.78∗∗∗∗∗∗
n̂T+1 0.08∗∗∗ 0.10∗∗∗ 0.10∗∗∗∗ 0.12∗∗∗∗∗∗ 0.14∗∗∗∗∗∗ 0.18∗∗∗∗∗∗
ŷT+4 0.29∗∗∗ 0.32∗∗∗ 0.41∗∗∗∗∗∗ 0.45∗∗∗∗∗∗ 0.50∗∗∗∗∗∗ 0.45∗∗∗∗∗∗
ĉT+4 0.23∗∗∗ 0.25∗∗∗ 0.28∗∗∗∗∗∗ 0.31∗∗∗∗∗∗ 0.36∗∗∗∗∗∗ 0.44∗∗∗∗∗∗
îT+4 1.25∗∗∗ 1.41∗∗∗ 1.49∗∗∗∗∗∗ 1.71∗∗∗∗∗∗ 1.95∗∗∗∗∗∗ 2.40∗∗∗∗∗∗
n̂T+4 0.27∗∗∗ 0.30∗∗∗ 0.31∗∗∗∗ 0.37∗∗∗∗∗∗ 0.43∗∗∗∗∗∗ 0.54∗∗∗∗∗∗

Notes: One and four periods RMSFE of the ML estimated models to estimates from the true likelihood es-
timated model from 1032 samples in percentage points of the respective variable’s steady state. Likelihood
specifications are as follows: L 1 – inverse likelihood conditioned solely on y1;L 1

p – maximization includes the

initial endogenous state; L 1,x=Ex – initial endogenous state set to the unconditional first moment; L 10,x=Ex

and L 20,x=Ex – same, but with the first 10 and 20 periods burned, respectively; 103 Particles – 103 particles
used, drawn from the states’ stationary distribution. Significance levels: ∗, ∗∗, ∗∗∗ denote p-values of 0.05,
0.01, and 0.001 for the null hypothesis that the estimate equals that from L 1; ∗, ∗∗, ∗∗∗ indicate the same
significance levels for the null that the estimate equals that from L 1

p .

Table 14: RMSFE of ML estimates from conditional likelihoods to true ML esti-
mates (in percentage points of the steady state, T=400)

L 1 L 1
p L 1,x=Ex L 10,x=Ex L 20,x=Ex 103 Particles

ŷT+1 0.02∗∗∗ 0.02∗∗∗ 0.04∗∗∗∗∗∗ 0.03∗∗∗∗∗∗ 0.03∗∗∗∗∗∗ 0.08∗∗∗∗∗∗
ĉT+1 0.02∗ 0.02∗ 0.02∗∗∗∗∗∗ 0.02∗∗∗∗∗∗ 0.02∗∗∗∗∗∗ 0.10∗∗∗∗∗∗
îT+1 0.09∗∗ 0.10∗∗ 0.13∗∗∗∗∗∗ 0.13∗∗∗∗∗∗ 0.13∗∗∗∗∗∗ 0.51∗∗∗∗∗∗
n̂T+1 0.02∗ 0.02∗ 0.03∗∗∗∗∗∗ 0.03∗∗∗∗∗∗ 0.03∗∗∗∗∗∗ 0.12∗∗∗∗∗∗
ŷT+4 0.07∗∗∗ 0.08∗∗∗ 0.12∗∗∗∗∗∗ 0.12∗∗∗∗∗∗ 0.12∗∗∗∗∗∗ 0.27∗∗∗∗∗∗
ĉT+4 0.06∗ 0.07∗ 0.08∗∗∗∗∗∗ 0.08∗∗∗∗∗∗ 0.08∗∗∗∗∗∗ 0.32∗∗∗∗∗∗
îT+4 0.32∗∗ 0.35∗∗ 0.43∗∗∗∗∗∗ 0.44∗∗∗∗∗∗ 0.45∗∗∗∗∗∗ 1.70∗∗∗∗∗∗
n̂T+4 0.07 0.08 0.09∗∗∗∗∗∗ 0.09∗∗∗∗∗∗ 0.10∗∗∗∗∗∗ 0.39∗∗∗∗∗∗

Notes: One and four periods RMSFE of the ML estimated models to estimates from the true likelihood es-
timated model from 1032 samples, in percentage points of the respective variable’s steady state. Likelihood
specifications are as follows: L 1 – inverse likelihood conditioned solely on y1;L 1

p – maximization includes the

initial endogenous state; L 1,x=Ex – initial endogenous state set to the unconditional first moment; L 10,x=Ex

and L 20,x=Ex – same, but with the first 10 and 20 periods burned, respectively; 103 Particles – 103 particles
used, drawn from the states’ stationary distribution. Significance levels: ∗, ∗∗, ∗∗∗ denote p-values of 0.05,
0.01, and 0.001 for the null hypothesis that the estimate equals that from L 1; ∗, ∗∗, ∗∗∗ indicate the same
significance levels for the null that the estimate equals that from L 1

p .
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Figure 10: Posterior errors of estimated steady state and behavioral parameters (% of prior
range)—no discards
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Notes: RMSE of the posterior estimates to the true posterior kernel from 1024 samples, relative to the prior range in % (T = 200). The
likelihood specifications are as follows: E(L|Y1) – inverse likelihood conditioned solely on Y1; L (X1|Y1) – posterior draws include the
initial endogenous states; L (x1 = E(x)) – initial endogenous state set to its unconditional first moment; 103 Particles – 103 particles
used, drawn from the states’ stationary distribution. A Random-Walk Metropolis-Hastings sampler is used with 150,000 draws, where
the first 1/3 of the draws are discarded as burn-in.
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Figure 11: Posterior errors of estimated autoregressive coefficients (% of prior range)—no discards
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Notes: RMSE of the posterior estimates to the true posterior kernel from 1024 samples, relative to the prior range in % (T = 200).
The likelihood specifications are as follows: L 1 – inverse likelihood conditioned solely on y1; L 1

f – posterior draws include the initial

endogenous states; L 1,x=Ex – initial endogenous state set to its unconditional first moment, 103 Particles – 103 particles used, drawn
from the states’ stationary distribution. A Random-Walk Metropolis-Hastings sampler is used with 150,000 draws, where the first 1/3
of the draws are discarded as burn-in.
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Figure 12: Posterior errors of estimated innovation’s standard deviation (% of prior range)—no
discards

Avg p10 p25 p50 p75 p90

0

0.2

0.4

0.6

0.8

1

1.2

R
M

SE
to

B
en

ch
m

ar
k

in
%

(a) RMSE of ωA

Avg p10 p25 p50 p75 p90

0

0.5

1

R
M

SE
to

B
en

ch
m

ar
k

in
%

(b) RMSE of ωN

Avg p10 p25 p50 p75 p90

0

0.5

1

R
M

SE
to

B
en

ch
m

ar
k

in
%

(c) RMSE of ωG

Avg p10 p25 p50 p75 p90

0

5

10

15

20
R

M
SE

to
B

en
ch

m
ar

k
in

%

(d) RMSE of ωB

L 1 L 1
f L 1,x=Ex 103 Particles

Notes: RMSE of the posterior estimates to the true posterior kernel from 1024 samples, relative to the prior range in % (T = 200).
The likelihood specifications are as follows: L 1 – inverse likelihood conditioned solely on y1; L 1

f – posterior draws include the initial

endogenous states; L 1,x=Ex – initial endogenous state set to its unconditional first moment, 103 Particles – 103 particles used, drawn
from the states’ stationary distribution. A Random-Walk Metropolis-Hastings sampler is used with 150,000 draws, where the first 1/3
of the draws are discarded as burn-in.

A.2 MBCA

A.2.1 MBCA Equation system

The model in stationary variables x̄ read:

α
ȳt

n̄t
= exp(zN t)θ

c̄t

1− n̄t
, (13)
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exp(zI t) = βEt

�

gσc
gi

�

c̄t+1

c̄t

�σ �1− n̄t+1

1− n̄t

�σ(1−θ )�

(1−δ)exp(zI t+1) +α
ȳt+1

k̄t+1

��

, (14)

ȳt = exp(zAt)k̄
α
t n̄1−α

t , (15)

ȳt = īt + c̄t + ḡt , (16)

gpop gI k̄t+1 = īt + (1−δ)k̄t , (17)

ḡt = γ ȳt exp(zGt), (18)

exp(zBt) = βEt

�

�

gc c̄t+1

c̄t

�σ �1− n̄t+1

1− n̄t

�σ(1−θ ) r̄t

π̄t+1
exp(zBt+1)

�

, (19)

r̄t = r∗
�

1+ π̄t

1+π∗

�ψπ
�

ȳt

y ss

�ψy

exp(zRt), (20)

z j t = zss
j + z̄ j t , j ∈ {A, N , G, I , B, R}, (21)

zt+1 = Πzt + εt+1,εt+1 ∼N (0nz,Σnz×nz), (22)

zt = [z̄At , z̄N t , z̄Gt , z̄I t , z̄Bt , z̄Rt]
′. (23)

A.2.2 MBCA Data source

EMU-19 All data is on a quarterly frequency.

• Population: Total population national concept Eurostat 30/06/2025 23:00 Thou-

sand persons Seasonally and calendar adjusted data

• Hours worked: Total employment domestic concept Eurostat 16/04/2025 23:00

Thousand hours worked Total - all NACE activities Seasonally and calendar adjusted

data

• GDP: Gross domestic product at market prices Eurostat 28/04/2025 23:00 Chain

linked volumes (2010), million euro Seasonally and calendar adjusted data

• Consumption: Household and NPISH final consumption expenditure Eurostat 28/-

04/2025 23:00 Chain linked volumes (2010), million euro Seasonally and calendar

adjusted data

• Investment: Gross fixed capital formation Eurostat 28/04/2025 23:00 Chain linked

volumes (2010), million euro Seasonally and calendar adjusted data

• Inflation: Gross domestic product at market prices Eurostat 28/04/2025 23:00 Price

index (implicit deflator), 2010=100, euro Seasonally and calendar adjusted data
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Gross domestic product at market prices

• Interest rate: 3-month rate Eurostat 17/04/2025 11:00

US All data is on a quarterly frequency.

• Population: Population, Thousands, Quarterly, Not Seasonally Adjusted Data, B230-

RC0Q173SBEA, Updated: 2025-01-30 Federal Reserve Economic Data, Federal Re-

serve Bank of St. Louis

• Hours worked: Quarterly hours worked and employment in total U.S. economy and

subsectors, Data released March 6, 2025; Bureau of Labor Statistics, Office of Pro-

ductivity and Technology, (Seasonally Adjusted Data, information requested)

• GDP: Gross domestic product at market prices Table 1.1.6. Real Gross Domestic

Product, Chained Dollars [Billions of chained (2017) dollars] Seasonally adjusted at

annual rates, Bureau of Economic Analysis, Last Revised on: June 26, 2025

• Consumption: Personal consumption expenditures Table 1.1.6. Real Gross Domestic

Product, Chained Dollars [Billions of chained (2017) dollars] Seasonally adjusted at

annual rates, Bureau of Economic Analysis, Last Revised on: June 26, 2025

• Investment: Gross private domestic investment Table 1.1.6. Real Gross Domestic

Product, Chained Dollars [Billions of chained (2017) dollars] Seasonally adjusted at

annual rates, Bureau of Economic Analysis, Last Revised on: June 26, 2025

• Inflation: Gross domestic product at market prices Table 1.1.4. Price Indexes for

Gross Domestic Product Chained Dollars[Index numbers, 2017=100] Seasonally ad-

justed, Bureau of Economic Analysis, Last Revised on: June 26, 2025

• Interest rate: Short-term interest rates, Topic: Economy > Short-term economic

statistics OECD.SDD.STES,DSD_STES[at]DF_FINMARK,4.0,filtered,2025-04-29 21-

17-08

A.3 Basu and Bundick (2017)

A.3.1 Equation system

The model read:

sd ft −Et(β((exp(ρaat+1 + exp(evolat+1)ea,t+1))/ex p(at+1)) . . .
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× ((cηt+1(1− nt+1)
1−η)/(cηt (1− nt)

1−η))(1−σ)/θv f (ct/ct+1)(v f 1−σ
t+1 /(v f σ1

t+1))
1−1/θv f ) = 0

(24)

yt + fixedcost− productionconstant ·
�

exp(zt)nt

�1−α
(ut kt)

α = 0 (25)

nt ·
1−η
η

ct

1− nt
− (1−α)

yt + fixedcost
µt

= 0 (26)

1

1−φk

�

invt
kt
−δ0

� (δ1 +δ2(ut − 1))ut kt −α
yt + fixedcost

µt
= 0 (27)

log(rt)−
�

(1−ρr)
�

log(rss) +ρπ log(πt/πss) +ρy log(yt/1)
�

�

= 0 (28)

ct + g y yt exp(gt)−
�

yt − invt −
φπ
2

�πt

πss
− 1
�2

yt

�

= 0 (29)

kt+1 −
�

�

1− (δ0 +δ1(ut − 1) +
δ2

2
(ut − 1)2)−

φk

2

� invt

kt
−δ0

�2�
kt + invt

�

= 0 (30)

v ft −
�

utilityconstant · exp(at+1)(c
η
t (1− nt)

1−η)
1−σ
θv f + β(v f σ1

t+1)
1
θv f

�

θv f
1−σ
= 0 (31)

(v f σ1
t+1)−Et v f 1−σ

t+1 = 0 (32)

1− r rt · sd ft = 0 (33)

1− rt · sd ft ·π−1
t+1 = 0 (34)

1− sd ftEt

�

ut+1α(yt+1 + fixedcost)
µt+1ut+1kt+1

+
1

1−φk(invt+1/kt+1 −δ0)

�

1− (δ0 +δ1(ut+1 − 1) . . .

+
δ2

2
(ut+1 − 1)2)−

φk

2
(invt+1/kt+1 −δ0)

2 . . .

+φk(invt+1/kt+1 −δ0)(invt+1/kt+1)
�À 1

1−φk(invt/kt −δ0)

�

= 0 (35)

φπ

�

πt

πss
− 1
�

πt

πss
−Et

�

(1− θµ) +
θµ

µt
+ sd ftφπ

�

πt+1

πss
− 1
�

yt+1

yt

πt+1

πss

�

= 0 (36)

at+1 − (ρaat + exp(evolat)ea,t) = 0 (37)

A.3.2 Data source

US All data is on a quarterly frequency.

• Population: Population, Thousands, Quarterly, Not Seasonally Adjusted Data, B230-

RC0Q173SBEA, Updated: 2025-01-30 Federal Reserve Economic Data, Federal Re-

serve Bank of St. Louis

• Hours worked: Quarterly hours worked and employment in total U.S. economy and
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Table 15: Prior and posterior distribution—profile likelihood

Prior Posterior

Parameter Prior Distribution Mean Standard deviation Mean Standard deviation

φK IG 5 Mean/5 5.56 Mean/28
ωZ IG 0.0015 Mean/5 0.013 Mean/11
ωG IG 0.001 Mean/5 0.021 Mean/7
ωA IG 0.004 Mean/5 0.0056 Mean/22
ωv IG 0.25 Mean/5 0.1213 Mean/10
ρZ B 0.98 0.005 0.74 0.023
ρG B 0.8 0.05 0.99 0.003
ρA B 0.8 0.05 0.94 0.004
ρv B 0.8 0.05 0.89 0.01
Notes: IG : Inverted Gamma Distribution,B: Beta Distribution. Posterior draws from a SMC Algorithm with N = 1, 000 particles (Herbst

and Schorfheide, 2015, Algorithms 8, 9, and 10.). The likelihood tempering schedule follows (n/Nφ)2 with Nφ = 200. Resampling takes
place for effective sample sizes lower N/2. The likelihood is a profile likelihood with respect to the endogenous states and conditional on
the first observation.

subsectors, Data released March 6, 2025; Bureau of Labor Statistics, Office of Pro-

ductivity and Technology, (Seasonally Adjusted Data, information requested)

• GDP: Gross domestic product at market prices Table 1.1.6. Real Gross Domestic

Product, Chained Dollars [Billions of chained (2017) dollars] Seasonally adjusted at

annual rates, Bureau of Economic Analysis, Last Revised on: June 26, 2025

• Consumption: Personal consumption expenditures Table 1.1.6. Real Gross Domestic

Product, Chained Dollars [Billions of chained (2017) dollars] Seasonally adjusted at

annual rates, Bureau of Economic Analysis, Last Revised on: June 26, 2025

• Investment: Gross private domestic investment Table 1.1.6. Real Gross Domestic

Product, Chained Dollars [Billions of chained (2017) dollars] Seasonally adjusted at

annual rates, Bureau of Economic Analysis, Last Revised on: June 26, 2025

A.3.3 Profile likelihood
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Figure 13: Prediction residuals—profile likelihood
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Notes: Data and model long run equals stochastic steady state.

Figure 14: Business cycle decomposition—profile likelihood
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Notes: Centered times series from singular shocks on, interactions, and data.

Table 16: Normalized inverted mean
squared error—profile likelihood

Z G A v Interaction

0.01 0.03 0.01 0.91 0.03
Notes: Normalized inverted mean squared error: inverted

mean squared error relative to accumulated inverted mean
squared errors.
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