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Abstract

Polynomial chaos expansion (PCE) provides a method that enables the
representation of a random variable, the quantity of interest (QoI), as
a series expansion of other random variables, the inputs. Traditionally,
uncertain parameters of the model are treated as random inputs, and the
QoI is an element of the model’s solution, e.g., the policy function, the
second moments of observables, or the posterior kernel. PCE then surro-
gates time-consuming repetition of model solutions and evaluations for
different values of the inputs. Additionally, PCE allows to discretize the
space of square-integrable distributions, including those containing mass
points.
The paper discusses the suitability of PCE for computational eco-
nomics. We, therefore, introduce to the theory behind PCE, ana-
lyze the convergence behavior for different elements of the solution
of the standard real business cycle model as illustrative example,
and check the accuracy, if standard empirical methods are applied.
The results are promising, both in terms of accuracy and efficiency.
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1 Introduction

The implementation of modern computational models is often complicated by
stochastic features and distributions. Two important examples are parame-
ter uncertainty and heterogeneity inside the state space. The latter typically
implies that a distribution over idiosyncratic states becomes part of the state
space and methods to discretize this infinite-dimensional object are needed
before numerical methods can adequately handle them. Concerning the for-
mer, the uncertainty of parameters translates into uncertainty regarding the
model’s outcomes. Sensitivity analyses and estimation methods are convenient
to deal with this uncertainty but require numerous repeated model solutions.
Depending on the complexity of the model, estimation and sensitivity analysis
can become a time-consuming computational task or even excessive if the fac-
tor time is critical, as in high-frequency real-time analysis. Polynomial chaos
expansion (PCE), as employed in other scientific disciplines, offers an elegant
way to deal with these difficulties.1 This paper presents the basic theory and
the implementation of PCE, discusses and performs potential application in
economics, and comes with adequate MATLAB® code.

In a nutshell, PCE enables the representation of a random variable as
a series expansion of other random variables. Concerning our non-exclusive
list (state-space discretization, sensitivity analysis, and estimation), there are
two pioneer applications in economics. Pröhl (2017) uses PCE to discretize
the state-space of the benchmark heterogeneous agent model and Harenberg
et al (2019) use the polynomial coefficients for global sensitivity analysis of
the standard real business cycle model.2 To complete our list, we especially
examine the suitability for empirical methods. Our approach is to use PCE
as a surrogate of the distribution of the model outcome given some parame-
ter uncertainty. Therefore, we depict different model outcomes as quantities of
interest (QoIs) (e.g., the policy function or the posteriors kernel) in terms of
a series expansion of the model’s uncertain parameters. Given the respective
formulae, the required repeated evaluations are inexpensive in terms of com-
putational time instead of repeated, potentially time-consuming, solutions of
the entire model. Without limiting the applicability for other purposes, we use
dynamic stochastic general equilibrium (DSGE) models and apply generalized
methods of moments and likelihood-based methods, as we are familiar with
the required techniques.

In its general form, the underlying theory of the method rests on the theory
introduced by Wiener (1938) and the Cameron and Martin (1947) theorem.
Given a family of stochastically independent and normally distributed random
variables, which we call germs, the theorem establishes the existence of an
orthogonal decomposition—with identity in the L2 sense—of any random vari-
able with finite second moments and measurable with respect to the germs, into

1See e.g. Kaintura et al (2018) for a review on the increasing application of PCE in electronics
and electrics.

2Gersbach et al (2021) follow Harenberg et al (2019) and use PCE to identify decisive param-
eters. In finance PCE is e.g. applied by Albeverio et al (2019); Dias and Peters (2021); Marconi
(2016).
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Hermite polynomials in the germs. If we identify the germs with (transforma-
tions of) the model’s unknown parameters, and if the model’s outcome satisfies
the required conditions, which apply to most computational economic models,
the theory justifies an approximation of the model’s outcome by a truncated
series of polynomials in the unknown parameters. The so-called truncated PCE
can be constructed easily from a limited number of model evaluations, and
after construction of the PCE the model’s outcome can be obtained uncostly
by evaluation of the truncated series instead of repeated solutions of the model.

Ghanem and Spanos (1991) provide first applications of the theory to the
problem of uncertain model parametrization. In such applications, we can typ-
ically restrict attention to the far easier case with a finite number of germs. In
the one-dimensional case where parametrization uncertainty is introduced by
means of only one unknown parameter described by a random variable θ with
(Borel) probability measure Pθ, the existence of orthogonal decompositions is
the direct consequence of the property that the (orthogonal) polynomials with
respect to the inner product in L2(R,B(R), Pθ) form a complete orthogonal
system in L2. Moreover, the property does not only hold for Hermite poly-
nomials and probability measures of normally distributed random variables
but also extends to other commonly used distributions and the correspond-
ing orthogonal polynomials from the Askey scheme. This extension, initially
proposed by Xiu and Karniadakis (2002), is also known as generalized poly-
nomial chaos expansion. For a finite number of unknown and stochastically
independent parameters θi, the property also extends to tensor products of
the polynomials and the product probability measure. In consequence, any L2

mapping can be represented by a Fourier series in the orthogonal polynomi-
als and any random variable with finite second moments which is measurable
with respect to the θi can be written as a series of polynomials in the θi.

For the problem at hand, the L2 mapping for which the Fourier series
must be constructed is identified with the mapping from parameter values
to the model’s outcome Y . Moreover, the Fourier coefficients are defined by
the inner product of this mapping with the orthogonal polynomials. If the
inner product cannot be computed analytically, numerical integration rules like
Gauss quadratures can be employed which, if the dimensionality of unknown
parameters is not too large, require only a comparably small number of model
evaluations. As the dimensionality of the problem becomes larger, sparse grid
methods, such as Smolyak-Gauss quadrature can help or, alternatively, the
coefficients can be obtained from least squares.

After the construction of the truncated PCE, it can be used as a surrogate
of the model outcome and thus, for inexpensive evaluations. First, statistical
properties of the model outcome can be derived directly from the PCE and
the parameters’ distributions. The statistical properties can then be used to
quantify the effects of parameter uncertainty. For example, the variance of
the model outcome can be used as a first indicator for a sensitivity analysis,
which provides the basis of the approach of Harenberg et al (2019). Second,
the Fourier expansion can also be used as a pointwise approximation for the
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mapping between parameters and the QoI. This mapping is the basis of our
approach, as estimation methods that require repeated recalculations of the
model outcome can be sped up significantly. Since Bayesian inference naturally
combines the specification of a-priori parameter uncertainty in form of prior
distributions with the necessity for repeated model solutions, it provides an
especially well-suited setting for the implementation of PCE. The application
of PCE in Bayesian inference was first analyzed by Marzouk et al (2007) in
engineering but to the best of our knowledge, the method has not yet been
studied in economic models.

We apply the method of PCE to the benchmark real business cycle (RBC)
model, since this model is suited as illustrative example due to its well-known
and simplistic nature. We analyze the convergence behaviour of the PCE—
in the sense of the L2 norm of the approximation error over the parameters’
support—as the degree of truncation is increased. Our analysis starts with an
example where three parameters are assumed unknown, namely the capital
share in production, the coefficient of relative risk aversion and the autocorre-
lation parameter of total factor productivity, and considers the PCEs of various
model outcomes including the model’s linear solution, a projection solution,
the variables’ second moments and the impulse response function. Although we
assume rather ”loose” distributions for the unknown parameters, we find lin-
ear convergence speed in all cases, and remarkably well approximations can be
obtained already with a rather small degree of truncation and a small number
of model evaluations. If the model outcome, e.g the linearized policy function,
has to be evaluated for a sample of 100,000 parameter values, the PCE with
truncation degree 7 provides an approximation with L2 error of 10−3 while
the computational time for construction and evaluation is lower by the factor
30 compared to repeated computations.

We extend our example to the higher-dimensional problem where all six
model parameters are assumed unknown. Compared to full-grid quadrature
rules, sparse-grid quadrature rules and least squares provide less accurate
derivations of the PCE coefficients. In consequence, the approximated PCEs
require a higher degree of truncation in order to deliver the same accuracy.
However, they also require significantly less time for construction. A compar-
ison of computational time versus the approximation’s accuracy shows that
the PCE constructed from sparse-grid quadrature is most efficient followed by
least squares. Yet, for higher degrees of truncation, inaccuracies in the PCE
coefficients derived from least squares eventually become dominant and even
reverse convergence.

Our analysis continues with Monte Carlo experiments as in Ruge-Murcia
(2007) where we gauge the quality of the model’s PCE when used for sev-
eral empirical methods. More specifically, we estimate the model’s parameters
by generalized method of moments (GMM), simulated method of moments
(SMM), maximum-likelihood estimation (MLE) and Bayesian estimation (BE)
but use PCE to evaluate the QoI for different parameter values. Compared to
the benchmark procedure of repeated solutions, we find that the PCE based
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method is remarkably efficient and accurate. Estimates deviate only negligibly
from the benchmark procedure and most notable, the computation time can
be reduced by 99 percent for BE and by 50 percent for GMM, SMM and MLE.

Given the so far promising result, we stress PCE out more by gauging
the quality of the non-linear model’s PCE for likelihood-based estimations.
For this purpose, we replicate the findings of Fernández-Villaverde and Rubio-
Ramı́rez (2005), who have shown that non-linearity is already relevant for the
estimates of our benchmark real business cycle (RBC) model. We show that
the use of PCE for the estimation of the non-linear model enhances the accu-
racy of the estimates considerably in comparison to a repeated, linearly-solved
model estimation and the reduces time required considerably compared to a
repeated globally-solved model estimation. Further, with PCE as a surrogate
for the likelihood, the likelihood from a particle filter becomes continuously
differentiable—allowing a gradient-based optimization.

The application of Pröhl (2017) is somewhat different. She uses PCE to
expand the distributed state variables. The coefficients of the truncated PCE
become the state variables and thereby, arguments of the policy function.
While the examination of this approach is out of our scope, this primer in
PCE together with fundamental knowledge of the solution methods of het-
erogeneous agent models are sufficient to outline the basic idea of the Pröhl
(2017) approach.

The remainder of the paper is structured as follows. First, we give a simple
example to outline the concept of PCE in section 2. In section 3 we review the
basic theory for the existence of polynomial chaos expansions and present the
most common practical methods to compute the PCE coefficients. Section 4
discusses different applications of the PCE, either to evaluate statistical prop-
erties of the model outcome or for pointwise approximation of the mapping
from the parameters to the model outcome. In this section, we particularly
highlight its application to construct surrogates for the model’s linear solu-
tion or for projection solutions and to approximate gradients. Additionally, we
present the basic concepts behind the applications of Harenberg et al (2019)
and Pröhl (2017). In section 5, we apply our approach to the benchmark
RBC model and discuss the basic results and potential drawbacks. Section 6
concludes. More detailed derivations are found in the appendix.

2 A Simple Example

Before introducing the theoretical framework of PCE, we first want to outline
the concept at hand of a simple example. Since our numerical analysis focuses
on discretely-timed models, our example considers the following system of
linear first-order difference equations in two real-valued variables x1,t and x2,t,

ϑx1,t+1 + x2,t+1 = x1,t,

x1,t+1 + x2,t+1 = x2,t,
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for all t ∈ N, and given x1,0 and x2,0. Moreover, ϑ ∈ (0, 1) is an unknown
parameter. While the variables’ explicit recursion can be derived straightfor-
wardly here by(
x1,t+1

x2,t+1

)
= H(ϑ)

(
x1,t
x2,t

)
, where H(ϑ) :=

(
h11(ϑ) h12(ϑ)
h21(ϑ) h22(ϑ)

)
=

( −1
1−ϑ

1
1−ϑ

1
1−ϑ

−ϑ
1−ϑ

)
,

the mapping ϑ 7→ H(ϑ) from the unknown parameter to the (linearized) policy
can typically not be derived analytically, but can only be computed numer-
ically, if the system of difference equations is non-linear and stochastic. In
consequence, if H(ϑ) needs to be computed for different parameter values, the
underlying numerical methods must eventually be applied repeatedly. PCE,
on the other hand, aims to represent the mapping ϑ 7→ H(ϑ) as a truncation
from the Fourier series

hij(ϑ) =

∞∑
n=0

ĥ
(n)
ij qn(ψ

−1(ϑ)),

where qn is the n-th polynomial from a family of orthogonal polynomials,
ψ−1(ϑ) is a transformation of the parameter space into the space of the polyno-

mial orthogonal counterpart’s argument, and ĥ
(n)
ij is the corresponding Fourier

coefficient of the polynomial. The truncated series expansion is constructed
from a limited number of numerical evaluations of the mapping as follows.

First, the uncertainty about the parameter is taken into account by describ-
ing it by a random variable θ with suitable probability distribution Pθ. For
the present example, suppose that θ is uniformly distributed over the interval
(0, b), 0 < b ≤ 1. Second, the series expansion is constructed in a well-known
family of orthogonal polynomials, which satisfies orthogonality w.r.t. some
weighting function w. Thereby, the appropriate family of orthogonal polyno-
mials is most conveniently chosen in such a way that the weighting function
w coincides with the probability density function of the unknown parame-
ter. However, in order to achieve conformity between the weighting function
and the density function, a (linear) transformation of the parameter typically
becomes necessary. In the present case, Legendre polynomials {Ln}n≥0 are
orthogonal w.r.t. the weighting function w(s) = 1(−1,1)(s), i.e. they satisfy

∫
R
Ln(s)Lm(s)w(s) ds =

{
0, if n ̸= m,

∥Ln∥2 := 2
2n+1 , if n = m.

Hence, transformation of the unknown parameter θ to the so-called germ ξ by

ξ := ψ−1(θ) := 2
θ

b
− 1 ⇔ θ = ψ(ξ) =

(ξ + 1)b

2
,
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Table 1: Example

i ωi si ϑi h11(ϑi)

1 0.2369 -0.9062 0.0422 -1.0441
2 0.4786 -0.5385 0.2077 -1.2621
3 0.5689 0 0.4500 -1.8182
4 0.4786 0.5385 0.6923 -3.2500
5 0.2369 0.9062 0.8578 -7.0314

yields the desired result, and Legendre polynomials are orthogonal w.r.t. the
probability distribution Pξ of ξ. Given that b < 1, the mapping s 7→ hij(ψ(s))
for each entry hij of the matrix H is square integrable w.r.t. Pξ and can be
represented by a Fourier series of the form3

hij(ψ(s)) =

∞∑
n=0

ĥ
(n)
ij Ln(s). (1)

Moreover, orthogonality implies that the Fourier coefficients ĥ
(n)
ij satisfy

ĥ
(n)
ij = ∥Ln∥−2

∫ 1

−1

hij(ψ(s))Ln(s) ds.

Finally, numerical integration methods are generally required to compute the

coefficients ĥ
(n)
ij . For example, using Gauss-Legendre-quadrature withM nodes

si and weights ωi yields
4

ĥ
(n)
ij ≈ ∥Ln∥−2

M∑
i=1

hij(ψ(si))Ln(si)ωi.

Table 1 shows for b = 0.9 and M = 5 the quadrature weights ωi, the nodes
si, the corresponding retransformed parameter values ϑi := ψ(si), and for the
matrix entry h11 the evaluation h11(ϑi) = −1

1−ϑi
. Together with L0(si) = 1,

3The details in which sense convergence of the series can be established are discussed in the
next section.

4If we additionally write the transformation ψ between parameter and germ in terms of the
Legendre polynomials, i.e.

ψ(s) =
b

2︸︷︷︸
=:ϑ̂0

L0(s) +
b

2︸︷︷︸
=:ϑ̂0

L1(s),

we equivalently arrive at

ĥ
(n)
ij ≈ ∥Ln∥−2

M∑
i=1

hij

(
ϑ̂0L0(si) + ϑ̂1L1(si)

)
Ln(si)ωi.

Note that this expression is identical to the more general form in (4).



8 PCE: Efficient Evaluation and Estimation of Computational Models

0 0.2 0.4 0.6 0.8

−6

−4

−2

ϑ

h
1
1
(ϑ

)
exact PCE

Fig. 1: Example: Exact Evaluation and PCE (numerical integration)

L1(si) = si, ∥L0∥2 = 2, and ∥L1∥2 = 2
3 , one can therefore compute, e.g.,5

ĥ
(0)
11 ≈ 1

2

5∑
i=1

h11(ϑi)ωi = −2.55 and ĥ
(1)
11 ≈ 3

2

5∑
i=1

h11(ϑi)siωi = −2.70.

In this case, the computation of the Fourier coefficients ĥ
(n)
11 requires M = 5

(numerical) evaluations of the mapping ϑ 7→ h11(ϑ). After computation of the
first N + 1 Fourier coefficients, one can use the truncated series expansion of
(1), i.e.

h11(ϑ) ≈
N∑
n=0

ĥ
(n)
11 Ln(ψ

−1(ϑ)),

in order to (approximately) evaluate h11(ϑ) for arbitrary parameter values
without further need of direct numerical evaluations.6 Figure 1 shows a com-
parison between exact evaluation of h11(ϑ) and the truncated PCE with
truncation level N = 5.

Finally, note already here that an important restriction of the methods is
the requirement that the mapping s 7→ hij(ψ(s)) is square integrable w.r.t. Pξ,
or equivalently w.r.t. the weighting function w corresponding to the family of

5For comparison, exact integration yields

ĥ
(0)
11 =

1

2

∫ 1

−1

−1

1 − (s+1)b
2

ds =
ln(1 − b)

b
= −2.56,

ĥ
(1)
11 =

3

2

∫ 1

−1

−s
1 − (s+1)b

2

ds =
6 − 3b

b2
ln(1 − b) +

6

b
= −2.71.

6Of course, an appropriate choice of the number M of quadrature nodes and, therefore, of the
number of numerical evaluations is necessary in order to derive the Fourier coefficients depends
on the truncation level N . More details on this topic are provided in the next section.
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orthogonal polynomials. In the present example, this condition is fulfilled for
b < 1. Yet, if b = 1, the integrals from which the coefficients are defined are
not finite, e.g.,

ĥ
(0)
11 =

1

2

∫ 1

−1

−1

1− s+1
2

ds = −∞.

3 Generalized Polynomial Chaos Expansions

We begin by reviewing the basic idea and theory behind the concept of PCE.
While PCE proved useful for a variety of applications, we focus on their imple-
mentation to efficiently evaluate computationally expensive model outcomes
when one or more of the model’s inputs, e.g. model parameters, are uncertain.

Notation and Preliminaries

We consider a computational economic model where ϑi ∈ Θi,Θi ⊂ R, i =
1, . . . , k, denotes an arbitrary selection of k ∈ N parameters of the model.
Moreover, we are interested in some model outcome(s) denoted by a vector
y ∈ Rm,m ∈ N. The relation between the input parameters ϑi and the model
outcome(s) y is determined deterministically, i.e. repeated computation of y
with the same inputs ϑi to the model produces the same result.7 This mapping
between the ϑi and y is described by

y = h(ϑ1, . . . , ϑk)

where h : Θ → Rm,Θ =×k

i=1
Θi ⊂ Rk. Without loss of generality we consider

the case m = 1 in the following, and note that for m ≥ 2 all derivations can be
applied separately to each component yi of y, i = 1, . . . ,m, in the same way.

Now further consider the case where the values ϑi of the model parameters
are subject to some uncertainty to the researcher. In order to account for this
uncertainty, we switch from the deterministic representation of the parame-
ters to the perspective of describing them by appropriately distributed random
variables. Therefore, let (Ω,A, P ) denote a sufficiently rich probability space
so that any uncertain model input parameter can be described by some real
valued random variable θi : Ω → R, i = 1, . . . , k, where the real line is equipped
with the Borel sigma-algebra B(R). Moreover, let ξ1, . . . , ξk denote a family
of stochastically independent random variables chosen by the researcher as
a basis of the desired polynomial expansions, the so-called germs. In appli-
cations, as will be described later, the germs are most commonly either set
equal to the uncertain model parameters θi or to some natural and convenient
transformation of them. We assume:

7E.g., if y denotes some second moments of the model, these are derived either from available
analytic formulae from the (approximated) model solution or are computed from simulations with
the same sample of shocks.
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1. The germs ξ1, . . . , ξk cover the same stochastic information as the uncertain
model parameters, i.e.

σ(ξ1, . . . , ξk) = σ(θ1, . . . , θk),

where σ(·) denotes the sigma-algebra generated by the random variables.
2. All moments of each ξi exist, i.e. E[|ξi|n] <∞ for all i = 1, . . . , k and n ∈ N0.

Moreover, we write θ := (θ1, . . . , θk) : Ω → Rk and ξ := (ξ1, . . . , ξk) : Ω → Rk
for the k-dimensional random vector of the uncertain model parameters and for
the random vector of the germs, respectively, where Rk is also equipped with
its Borel sigma-algebra B(Rk). For each i = 1, . . . , k, let Pξi := P ◦ ξ−1

i denote
the probability measure of ξi on (R,B(R)) and analogously let Pξ := P ◦ξ−1 =⊗k

i=1 Pξi denote the product probability measure of ξ on (Rk,B(Rk)). The
Hilbert space (of equivalence classes) of square integrable real valued functions
on (R,B(R), Pξi) is denoted by

L2
i := L2(R,B(R),dPξi)

:=

{
f : R → R

∣∣ f is measurable and

∫
R
f2 dPξi <∞

}
,

where the inner product is defined by

⟨f, g⟩L2
i
:=

∫
R
fg dPξi = E[f(ξi)g(ξi)] for f, g ∈ L2(R,B(R), Pξi).

We use the notation ∥ · ∥L2
i
for the induced norm on L2

i . We introduce the

analogous notation, i.e. L2 := L2(Rk,B(Rk),dPξ), for the space of square
integrable real valued functions on (Rk,B(Rk), Pξ) and write ⟨·, ·⟩L2 and ∥·∥L2

for the inner product and for the induced norm on L2. If the distributions of
the random variables ξi possess probability density functions wi : R → R+, the
inner products become

⟨f, g⟩L2
i
=

∫
R
f(s)g(s)wi(s) ds,

and

⟨f, g⟩L2 =

∫
R
. . .

∫
R
f(s1, . . . , sk)g(s1, . . . , sk)w1(s1) · . . . · wk(sk) ds1 . . . dsk,

so that L2
i = L2(R,B(R), wi(s) ds) and L2 = L2(Rk,B(Rk), w(s) ds) where w

is the joint probability function w(s) :=
∏k
i=1 wi(si). Note that Assumption 2

is equivalent to the fact that for each i = 1, . . . , k all univariate polynomials
are included in L2

i or, again equivalently, that all k-variate polynomials are
included in L2.
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Since, by Assumption 1, each θi is σ(ξ)-measurable, there exist measurable
ψi : Rk → R which satisfy

θi = ψi ◦ ξ.
We write ψ := (ψ1, . . . , ψk) : Rk → Rk so that θ = ψ ◦ ξ. Moreover, note that
σ(ξ) = σ(θ) also implies the existence of a measurable, inverse mapping ψ−1

with ψ ◦ ψ−1 = ψ−1 ◦ ψ = id. A further assumption we make is that

3. the second moment of each model input parameter exists, i.e. E[θ2i ] <∞ for
i = 1, . . . , k. Equivalently, each ψi is square integrable on (Rk,B(Rk), Pξ),
i.e. ψi ∈ L2 for all i = 1, . . . , k.8

Moreover, as the model input parameters θi are now treated as random, the
model outcome of interest is random. We therefore adapt its notation to
Y : Ω → R. Yet, given any elementary event ω ∈ Ω and corresponding realiza-
tion θi(ω), the mapping between the model parameters and the model outcome
is still determined deterministically by Y (ω) = h(θ1(ω), . . . , θk(ω)), i.e.

Y = h ◦ θ = h ◦ ψ ◦ ξ, for some h : Rk → R.

The final assumption is that Y is a well-defined random variable with finite
second moments, i.e.

4. h is measurable and h◦ψ is square integrable on (Rk,B(Rk), Pξ), i.e. h◦ψ ∈
L2.

3.1 Single Uncertain Parameter and Germ (k=1)

We begin our description with the simplest case with only one single uncertain
input parameter θ and one single germ ξ, i.e. k = 1. In general, any arbitrary
choice of the germ that satisfies Assumption 2 implies that all polynomials are
included in L2, and therefore allows the construction of an orthogonal system
of polynomials {qn}n∈N0

⊂ L2, i.e. a family of polynomials where qn is of
(exact) degree n and

⟨qn, qm⟩L2 = ∥qn∥2L2δm,n for all m,n ∈ N0,

where δm,n denotes the Knonecker delta. This can generally be achieved by
applying, e.g., the Gram-Schmidt process to the sequence of monomials.

In practice, the distribution of the uncertain input parameter is given and
one is free to set the germ. It is then convenient to define the germ in such
way that i) an easy representation θ = ψ(ξ) of the parameter in terms of the
germ arises and ii) the family of orthogonal polynomials in L2 corresponds to
some well-known class of polynomials. Table 2 summarizes the natural choice
of the germ and the corresponding family of orthogonal polynomials when the
input parameter is normal, uniform, Beta or (inverse) Gamma distributed.

8Note that the third assumption is already implied by the second if the germs are set equal to
(some polynomial transformation of) the model input parameters.
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More details for these classes are given in Appendix A. Additionally, Xiu and
Karniadakis (2002) provide a similar overview for discrete distributions.

In all of the cases presented in Table 2 the respective families of orthogonal
polynomials {qn}n∈N0 form a complete orthogonal system, i.e. lie densely in
L2 = L2(R,B(R), Pξ) = L2(R,B(R), w(s) ds) where w is the corresponding
probability density of ξ.9 More generally, it follows from Riesz (1924) that
{qn}n∈N0 is a complete orthogonal system in L2 if and only if there exists no
other measure µ on (R,B(R)) which generates the same moments as Pξ, i.e. if
and only if there is no other measure µ such that∫

R
sn dµ =

∫
sn dPξ = E[ξn] for all n ∈ N0.

If completeness of {qn}n∈N0 in L
2 can be established, then Assumptions 3 and 4

guarantee the existence of Fourier series expansions of ψ and h◦ψ in the orthog-
onal polynomials, i.e. there are coefficients {ϑ̂n}n∈N0 and {ŷn}n∈N0 , ϑ̂n, ŷn ∈ R,
so that

ψ =

∞∑
n=0

ϑ̂nqn in L2 = L2(R,B(R), Pξ),

h ◦ ψ =

∞∑
n=0

ŷnqn in L2 = L2(R,B(R), Pξ).

Note that identity and convergence is understood in L2 which also implies
pointwise convergence a.e. for a subsequence but not pointwise convergence.10

Moreover, since Pθ = Pξ ◦ψ−1, also h =
∑∞

n=0 ŷn(qn◦ψ−1) in L2(R,B(R), Pθ).
Hence, the uncertain model input parameter θ = ψ ◦ ξ as well as our model

outcome Y = h ◦ ψ ◦ ξ can both be expanded exactly by a polynomial series
in the germ, i.e. by

θ = ψ(ξ) =

∞∑
n=0

ϑ̂nqn(ξ) in L2(Ω,A, P ), (2a)

Y = h(θ) = h(ψ(ξ)) =

∞∑
n=0

ŷnqn(ξ) in L2(Ω,A, P ). (2b)

These series expansions are called the polynomial chaos expansions (PCE) of θ
and Y with respect to the germ ξ. Moreover, orthogonality of {qn}n∈N0

implies
that the Fourier coefficients are determined by

ϑ̂n = ∥qn∥−2
L2 ⟨ψ, qn⟩L2 = ∥qn∥−2

L2

∫
R
ψqn dPξ, (3a)

9See Szegő (1939) for proofs of completeness.
10For conditions for pointwise convergence see e.g. Jackson (1941).
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ŷn = ∥qn∥−2
L2 ⟨h ◦ ψ, qn⟩L2 = ∥qn∥−2

L2

∫
R
(h ◦ ψ)qn dPξ. (3b)

Now in practice, equations (2a)-(2b) justify approximations of the uncertain
model input parameter θ as well as of the model outcome Y by their truncated
PCE, i.e. by

SN (θ) = SN (ψ ◦ ξ) :=
N∑
n=0

ϑ̂nqn(ξ),

SN (Y ) = SN (h ◦ ψ ◦ ξ) :=
N∑
n=0

ŷnqn(ξ).

The approximations then converge to the true random variables, SN (θ) → θ
and SN (Y ) → Y in L2 as N → ∞. Yet, equations (3a)-(3b) from which
the coefficients are defined can in general not be evaluated analytically. This
involves a second approximation for the coefficients ϑ̂n and ŷn. The literature
on PCE provides a variety of approaches for this task, from which we want to
review the most popular ones.

3.1.1 Polynomial Chaos Expansion of the Model Parameters

Since the germ can be chosen in any desired way that satisfies Assump-
tions 1 and 2, the following two opposing approaches can be pursued for its
specification.

In the first approach, one directly fixes the transformation ψ between the
uncertain model parameter and the germ. The germ’s distribution then follows
from the given distribution of the uncertain input parameter and the chosen
definition of ψ. In principal any choice of ψ which satisfies Assumption 2 is
possible. One could then construct the family of orthogonal polynomials from
the germ’s distribution and the expansion coefficients could be derived by
numerical integration of (3a) up to any desired order. However, it is typically
far more convenient to choose ψ as a simple linear transformation between
the uncertain model parameter and the germ which results in a family of
well-known orthogonal polynomials in L2, see e.g. Table 2. In this case the
expansion (2a) collapses to

θ = ψ(ξ) = ϑ̂0 + ϑ̂1q1(ξ)

and the expansion coefficients ϑ̂0 and ϑ̂1 are already known exactly.
Conversely, the second approach fixes the distribution of the germ and

constructs ψ in such way that it is compatible to the given distribution of
the uncertain parameter. This can be achieved as follows. Let Fξ denote the
desired (cumulative) distribution function of ξ and Fθ the given distribution
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function of θ. Then setting the germ to11

ξ := F−1
ξ ◦ Fθ ◦ θ

yields the desired distribution for ξ. Conversely,

ψ = F−1
θ ◦ Fξ

and the expansion coefficients can again be computed from (3a) by numerical
integration.

3.1.2 Polynomial Chaos Expansion of the Model Outcome

While the expansion of the model parameter can be directly controlled by the
appropriate choice of the germ, the expansion of the model outcome of interest
requires some evaluations of the model.

Spectral Projection

The first approach derives the polynomial chaos coefficients ŷn by applying
numerical integration methods to (3b). For example, if ξ possesses a probability
density function w, then (3b) becomes

ŷn = ∥qn∥−2
L2

∫
R
h(ψ(s))qn(s)w(s) ds.

Hence, a Gauss-quadrature with M nodes that corresponds to the weight
function w and to the orthogonal polynomials {qn}n∈N0

yields

ŷn ≈ ∥qn∥−2
L2

M∑
i=1

h(ψ(si))qn(si)ωi ≈ ∥qn∥−2
L2

M∑
i=1

h

(
N∑
m=1

ϑ̂mqm(si)

)
qn(si)ωi,

(4)
where si and ωi denote the quadrature’s nodes and weights, respectively. The
Gauss-quadrature rule with M nodes will require to evaluate the model out-

come h(ψ(si)) ≈ h
(∑N

m=1 ϑ̂mqm(si))
)

at each of the M nodes. Since the

quadrature rule with M nodes is exact for polynomials up to degree 2M − 1,
the number of nodes should be chosen appropriately. More specifically, if h◦ψ
is assumed to be well approximated by its truncated partial sum SN (h ◦ψ) of
degree N , the integrand, i.e. h(ψ(s))qn(s), is well approximated by polynomi-
als of degree not larger than 2N for each n = 1, . . . , N . Hence, it should then
hold that M ≥ N + 1.

11We denote by F−1 the quantile function.
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Least Squares

The second approach treats the ignored higher terms ϵ :=
∑∞

n=N+1 ŷnqn(ξ) of
the truncated PCE as the residual in a linear regression

Y = h(ψ(ξ)) =

N∑
n=0

ŷnqn(ξ) + ϵ.

One can then either draw M ∈ N i.i.d. sample points sj , j = 1, . . . ,M,
from the distribution Pξ or select them according to regression design prin-
ciples. After computing the corresponding model outcomes Yj = h(ψ(sj)) ≈
h
(∑N

m=1 ϑ̂mqm(sj))
)
the expansion coefficients are determined from

(ŷ0, . . . , ŷn) = argmin
ŷ0,...,ŷN

M∑
j=1

(
Yj −

N∑
n=0

ŷnqn(sj)

)2

.

The number of sample (design) points is recommended to be set twice or three
times as large as the number of unknown PCE coefficients in the literature,
i.e. to M = 2(N + 1) or M = 3(N + 1).

Stochastic Galerkin

For both methods discussed in the preceding paragraphs, the computation
of the expansion coefficients is detached from the underlying procedure from
which the model outcome is computed. This is different for the third method.
Instead of a more general discussion, we therefore only illustrate this method
for the case where the PCE of a model’s policy function is constructed. To
simplify the notation, suppose that the equations defining the model’s solution
can be reduced to a sole Euler equation in a single variable. Let S ⊂ Rs denote
the model’s state space and let g : S → R denote the variable’s policy function.
The Euler equation is typically translated into a functional (integral) equation
for g, say

R(g, x) = 0 for all x ∈ S.

If the functional equation can not be solved analytically, a common approach
is to construct an approximation ĝ from linear combinations of some basis
functions12, say Φj , j = 1, . . . , d, i.e.

ĝ(x) =

d∑
j=1

yjΦj(x).

In order to determine the coefficients yj in the approximation, which now serve
as our model outcome of interest and should not be confused with the Fourier

12Most commonly these are selected either as (tensor products of) Chebyshev polynomials or
as piecewise linear or cubic polynomials.
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coefficients of the PCE, one can, for example, select d appropriate collocation
points x1, . . . , xd ∈ S and solve the non-linear system of equations given by

R

(
d∑
j=1

yjΦj , xi

)
= 0 for all i = 1, . . . , d

for y1, . . . , yd.
Now consider the case where one parameter is uncertain and hence

described by the random variable θ. If the model’s (reduced) Euler equation
involves θ, then so does the functional equation for g, i.e. we now write

R(g, x; θ) = 0 for all x ∈ S.

Moreover, if one employs the above mentioned solution method, the coefficients
yj will typically also depend on θ, i.e. we have, in slight abuse of notation,
Yj = hj(θ). In particular, the mappings hj between the Yj and θ arise implicitly
from the non-linear system of equations

R

(
d∑
j=1

YjΦj , xi; θ

)
= 0 for all i = 1, . . . , d. (5)

In order to avoid the necessity for repeated and potentially computational
expensive solutions of this system of equations for different values of θ, one
may want to find for each Yj a PCE in terms of some chosen germ ξ13

θ = ψ(ξ) =

∞∑
n=0

ϑ̂nqn(ξ),

Yj = hj(θ) = hj(ψ(ξ)) =

∞∑
n=0

ŷjnqn(ξ).

The PCE of the model’s (approximated) policy function with respect to the
germ ξ is then given by

ĝ(x; ξ) =

d∑
j=1

YjΦj(x) =

d∑
j=1

∞∑
n=0

ŷjnqn(ξ)Φj(x).

Moreover, the Fourier coefficients ŷjn in the PCE can be derived by a Galerkin
method if we substitute the Yj in their implicit definition in (5) with their

13Note that in this case we have dmodel outcomes of interest, namely the coefficients Yj = hj(θ)
in ĝ.



18 PCE: Efficient Evaluation and Estimation of Computational Models

PCE and impute the corresponding conditions

R

(
d∑
j=1

∞∑
n=0

ŷjnqn(ξ)Φj , xi; ψ(ξ)

)
= 0 in L2,∀i = 1, . . . , d

⇔

〈
R

(
d∑
j=1

∞∑
n=0

ŷjnqn(ξ)Φj , xi; ψ(ξ)

)
, qm(ξ)

〉
L2

= 0 ∀i = 1, . . . , d, ∀m ∈ N0.

Hence, we can solve for the d(N+1) unknown coefficients ŷjn in the truncated

PCE Yj ≈
∑N

n=0 ŷjnqn(ξ) from the system of equations

0 ≈

〈
R

(
d∑
j=1

N∑
n=0

ŷjnqn(ξ)Φj , xi; ψ(ξ)

)
, qm(θ)

〉
L2

=

=

∫
R
R

(
d∑
j=1

N∑
n=0

ŷjnqn(ξ)Φj , xi; ψ(ξ)

)
qm(ξ) dPξ(ξ)

for i = 1, . . . , d andm = 0, . . . , N . The integral is computed numerically, either
from Monte-Carlo draws or from an appropriate Gauss quadrature. More-
over, ψ(ξ) can be substituted by its truncated series expansion as previously
described in subsection 3.1.1.

3.2 Multiple uncertain input parameters (k ≥ 2)

We now turn to the case where more than one input parameter is uncertain
and where more than one germ is used in the polynomial expansions. In brief,
the stochastic independence of the germs allows us to apply the procedure
from the one-dimensional case to each of the finitely many dimensions.

Since Assumption 2 guarantees that all polynomials are included in each
L2
i , one can again apply the Gram-Schmidt process to the sequence of mono-

mials and construct for each i = 1, . . . , k an orthogonal system of polynomials
{qin}n∈N0

⊂ L2
i where qin is a polynomial of (exact) degree n and

⟨qin, qim⟩L2
i
= ∥qin∥2L2

i
δm,n for all m,n ∈ N0.

For any multi-index α = (α1, . . . , αk) ∈ Nk0 we define the multivariate
polynomial

qα(ξ) :=

k∏
i=1

qiαi(ξi).

Since stochastic independence of the ξi implies that Pξ = ⊗ki=1Pξi , the family
of multivariate polynomials {qα}α∈Nk

0
then forms an orthogonal system in L2.

Moreover, if for each i = 1, . . . , k the orthogonal system {qin}n∈N0 is complete
in L2

i , then {qα}α∈Nk
0
is also complete in L2. In particular, this is satisfied if
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each θi is distributed according to one of the distributions specified in Table 2
and if the germs ξi are set accordingly. Then, since ψi ∈ L2 (Assumption 3) and

h◦ψ ∈ L2 (Assumption 4), there exist coefficients {ϑ̂iα}α∈Nk
0
⊂ R, i = 1, . . . , k,

and {ŷα}α∈Nk
0
⊂ R such that

ψi =
∑
α∈Nk

0

ϑ̂iαqα in L2 = L2(Rk,B(Rk), Pξ), (6a)

h ◦ ψ =
∑
α∈Nk

0

ŷαqα in L2 = L2(Rk,B(Rk), Pξ). (6b)

The second expansion can again be written equivalently as

h =
∑
α∈Nk

0

ŷα(qα ◦ ψ−1) in L2(Rk,B(Rk), Pθ).

Therefore, the parameters θi and the model outcome Y are again representable
in L2 by a PCE in the germs ξ through

θi = ψi ◦ ξ =
∑
α∈Nk

0

ϑ̂iαqα(ξ) in L2(Ω,A, P ), (7a)

Y = h ◦ θ = h ◦ ψ ◦ ξ =
∑
α∈Nk

0

ŷαqα(ξ) in L2(Ω,A, P ). (7b)

Moreover, the expansion coefficients are determined by

ϑ̂iα = ∥qα∥−2
L2 ⟨ψi, qα⟩L2 = ∥qα∥−2

L2

∫
Rk

ψiqα dPξ, (8a)

ŷα = ∥qα∥−2
L2 ⟨h ◦ ψ, qα⟩L2 = ∥qα∥−2

L2

∫
Rk

(h ◦ ψ)qα dPξ, (8b)

where Pξ = ⊗ki=1Pξi implies that ∥qα∥L2 =
∏k
i=1 ∥qiαi∥L2

i
.

Equations (8a)-(8b) guarantee that if the parameters θi and the model
outcome Y are approximated by their truncated PCE, the approximations
converge to the true random variables in L2 as the degree of the partial sums
is increased. The truncation is typically introduced either by limiting the total
degree of the multivariate polynomials

Stot
N (θi) = Stot

N (ψi ◦ ξ) :=
∑

α∈Nk
0 ,|α|≤N

ϑ̂iαqα(ξ), (9a)

Stot
N (Y ) = Stot

N (h ◦ ψ ◦ ξ) :=
∑

α∈Nk
0 ,|α|≤N

ŷαqα(ξ), (9b)
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where |α| :=
∑k

i=1 αi, or by limiting the maximal degree in each component

Smax
N (θi) = Smax

N (ψi ◦ ξ) :=
∑

α∈Nk
0 ,∥α∥∞≤N

ϑ̂iαqα(ξ), (10a)

Smax
N (Y ) = Smax

N (h ◦ ψ ◦ ξ) :=
∑

α∈Nk
0 ,∥α∥∞≤N

ŷαqα(ξ), . (10b)

where ∥α∥∞ := maxi=1,...,k αi.
In order to compute the expansion coefficients from their defining equations

(8a)-(8b), it is straightforward to adapt the methods from section 3.1.2 to
the multidimensional case. However, this typically introduces the curse of
dimensionality.

First, this issue becomes particularly problematic if the integrals are
computed by Gauss-quadrature rules. If the mapping h◦ψ can be well approx-
imated by its truncated series expansion SN , then the integrands (h ◦ ψ)qα in
(8b) can be well approximated by multivariate polynomials which rise up to
degree 2N in each component, indifferent from the fact whether |α| ≤ N or
∥α∥∞ ≤ N is assumed. Since one-dimensional Gauss-quadrature rules with M
nodes provide exact integration rules for polynomials up to degree 2M − 1, it
is required to compute (8b) by quadrature rules with M = N + 1 nodes in
each of the k dimensions. Hence, the model outcome must be evaluated for a
total of (N + 1)k parameter combinations and the procedure becomes quickly
inefficient as k rises.

However, sparse grid methods, as e.g. Smolyak-Gauss or monomial quadra-
ture rules can help to reduce the computational effort for similar integration
quality. The Smolyak-Gauss quadrature is illustrated in Appendix B and ana-
lyzed in the numerical example in section 5. The numerical examples for
Monomial rules are presented in Appendix C. We put them in the Appendix
due to the absence of suitable rules for practical purposes. Well-performing
rules are missing for truncation levels N > 4, dimensions k > 6, or mixed or
non-uniform-non-normal distributions (see Stroud, 1971; Adurthi et al, 2018;
Bhusal and Subbarao, 2020). However, we find remarkable results for the
few suitable cases, which motivates further research to find high degree, high
dimensional monomial rules for mixed distributions. Beyond these determinis-
tic quadrature rules, the literature considers adaptive sparse methods, e.g. by
eliminating points with Bayesian shrinkage priors or non-significant bases of a
regression (Bürkner et al, 2023; Cheng and Lu, 2018).

Second, the burden of higher-dimensional parameter vectors also appears in
similar form if the PCE coefficients are determined by least squares. However,
while the number of coefficients which must be computed equals (N + 1)k in
Smax
N , the number of coefficients grows less extremely in Stot

N where it is given

by
(
N+k
k

)
. Following the recommendation that the number of sample points

should be twice or three times as large as the number of unknown coefficients,
the model must be evaluated for 2

(
N+k
k

)
or 3

(
N+k
k

)
parameter combinations

in the latter case.
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4 Applications of Generalized Polynomial
Chaos Expansions

After its construction, the PCE of the model outcome can be used for com-
putational inexpensive evaluations of the model. On the one hand, statistical
properties of the model outcome, as induced by the predefined distribution of
the uncertain input parameters, can be derived directly from the PCE. On
the other hand, the expansion can also be used as a pointwise approximation
of the model outcome for different parameter values. Additionally, in some-
what other context, PCE can be used to discretize the space of cross-sectional
distributions.

Evaluation of Statistical Properties

Convergence in L2(Ω,A, P ) of the series expansion in (7b) implies that the
distribution of the model outcome Y can be equivalently characterized by
its polynomial expansion. In particular, the mean and variance of Y follow
directly from the fact that convergence in L2 also implies convergence of the
mean and variance so that orthogonality of the polynomials (and q0 = 1 for
0 := (0, . . . , 0) ∈ Nk0) yields

E[Y ] =
∑
α∈Nk

0

ŷαE[qα(ξ)] =
∑
α∈Nk

0

ŷαE[qα(ξ)q0(ξ)] =
∑
α∈Nk

0

ŷα⟨qα, q0⟩L2 = ŷ0,

and

Var[Y ] = E


∑
α∈Nk

0

ŷαqα(ξ)− ŷ0

2
 = E


 ∑
α∈Nk

0\{0}
ŷαqα(ξ)

2
 =

=
∑

α,β∈Nk
0\{0}

ŷαŷβ⟨qα, qβ⟩L2 =
∑

α∈Nk
0\{0}

ŷ2α∥qα∥2L2 .

Moreover, other statistical properties can be computed by Monte-Carlo meth-
ods. Large samples of Y can be efficiently constructed by drawing from the
germ’s distribution and inserting the sample into the expansion of Y . Com-
pared to traditional methods, repeated and costly model evaluations can thus
be avoided.

Sobol’s indices for global variance-based sensitivity analysis. The decomposi-
tion of the model’s outcome variance from above also lays the foundation for
the sensitivity analyses of Harenberg et al (2019). More specifically, consider
a truncated PCE Stot

N (Y ) or Smax
N (Y ) of the model outcome Y as in (9b) or
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(10b). By reordering, one can then equivalently write the truncated PCE as

Stot
N (Y ) =

∑
I⊂{1,...,k}

∑
α∈Nk

0 ,|α|≤N
αi ̸=0 ∀i∈I
αi=0 ∀i/∈I

ŷαqα(ξ),

i.e. for any collection {ξi}i∈I where I ⊂ {1, . . . , k} we now explicitly group the
polynomials qα(ξ) with non-zero degree in each ξi, i ∈ I but zero-degree in
all ξ, i /∈ I. Orthogonality of the polynomials then implies for any nonempty
collection I ⊂ {1, . . . , k}, I ̸= ∅ that

VI := Var
[ ∑
α∈Nk

0 ,|α|≤N
αi ̸=0 ∀i∈I
αi=0 ∀i/∈I

ŷαqα(ξ)
]
=

∑
α∈Nk

0 ,|α|≤N
αi ̸=0 ∀i∈I
αi=0 ∀i/∈I

ŷ2α∥qα∥2L2

and
V := Var[Stot

N (Y )] =
∑

I⊂{1,...,k},
I ̸=∅

VI .

The Sobol indices then describe the shares of the variance that are explained
by a collection {ξi}i∈I of germs for I ⊂ {1, . . . , k}, I ̸= ∅

SI :=
VI
V
.

The first order Sobol indices S{i} for single germs ξi are interpreted as the
fraction of the total variance which would disappear when ξi would be perfectly
known. On the other hand, the total contribution indices are defined by

STi :=

∑
I⊂{1,...,k},

i∈I
VI

V

and describe the germ’s total contribution to the outcome’s variance.

Relevance for (Bayesian) estimation. As Harenberg et al (2019) note, a suffi-
cient size of the total Sobol’ index of the parameter ϑi is a necessary condition
for the identifiability of ϑi using Y . In terms of a Bayesian estimation, PCE
also facilitates the comparison of the model outcome’s prior and posterior dis-
tribution. Once we have obtained the parameters’ posterior distribution, PCE
enables the representation of the corresponding posterior distribution of the
model’s outcome. We can then compare the PCE implied variances and the
contribution of an arbitrary set of parameters, which delivers an indicator
for the reduced uncertainty of the model outcome Y subject to this set of
parameters.
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Using the Expansion as Pointwise Approximation for the Model
Outcome

A truncated version of the Fourier series expansion (6b) can also be used as a
pointwise approximation for the mapping h between model input parameters
and any model outcome (e.g. the model solution - in the form of its policy
function -, the second moments or the likelihood function)

h(ϑ) ≈ SN (h ◦ ψ)(ψ−1(ϑ)) =
∑

α∈Nk
0 ,|α|≤N

ŷαqα(ψ
−1(ϑ)).

(11)

Note however that convergence of the series in L2 as N → ∞ does not imply
pointwise convergence on the support of Pξ but only pointwise convergence
a.e. for a subsequence.

The partial sum SN (h ◦ ψ) is the orthogonal projection of h ◦ ψ onto the
subspace of L2(Rk,B(Rk), Pξ) spanned by multivariate polynomials of total
degree less or equal to N . If the transformation ψ between germs and param-
eters is chosen linear, SN (h ◦ ψ) ◦ ψ−1 is also the orthogonal projection of h
onto this subspace in L2(Rk,B(Rk), Pθ).

14 In the sense of the induced metric,
it is therefore the best approximation of h by multivariate polynomials of total
degree up to N , i.e. it minimizes the mean-squared error over the support of
Pθ.

Special Case: Surrogate of Model Solution. Consider a discretely-timed model
where in any period t ∈ N the vector xt ∈ S ⊂ Rnx denotes the prede-
termined variables from the state space S and yt ∈ Rny is a vector of the
non-predetermined variables of the model. Suppose that θ is a random vector
of unknown parameters of the model, and for any possible realization ϑ ∈ Θ the
model solution is computed in terms of a policy function g(.; ϑ) : S → Rnx+ny

so that (
xt+1

yt

)
= g(xt; ϑ).

If, for any arbitrary x ∈ S and for a suitable transformation ψ between param-
eters and germs, the mapping ϑ 7→ g(x; ϑ) satisfies the sufficient condition in
assumption 4, then there exists a series expansion by orthogonal polynomials
{qα} of the form

g(x, ϑ) =
∑
α∈Nk

0

ĝα(x)qα(ψ
−1(ϑ)) in L2(Rk,B(Rk), Pθ),

ĝα(x) = ∥qα∥−2
L2

∫
Rk

g(x, ψ(s))qα(s) dPξ(s).

Perhaps the most prevalent approach in the literature to determine the
model’s policy function is to compute g from a linearized version of the model.

14Otherwise it is the orthogonal projection of h onto the subspace in L2(Rk,B(Rk), Pθ) spanned

by multivariate polynomials in ψ−1 of total degree less or equal to N .
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In this case
g(x; ϑ) = A(ϑ)x,

and numeric implementation of the methods proposed by Blanchard and Kahn
(1980), Klein (2000) or Sims (2002) allows to solve for the matrix A(ϑ) ∈
Rnx×(nx+ny) given any arbitrary but fixed ϑ ∈ Θ. Since the coefficients in the
policy’s PCE are here determined by

ĝα(x) =

(
∥qα∥−2

L2

∫
Rk

qα(s)A(ψ(s)) dPξ(s)

)
x =: Âαx,

the series expansion of the linear policy function can be written as

g(x, ϑ) =
∑
α∈Nk

0

ĝα(x)qα(ψ
−1(ϑ)) =

∑
α∈Nk

0

Âαqα(ψ
−1(ϑ))

x.

Moreover, the Âα coincide with the expansion coefficients from the PCE of
the model outcome A(ϑ). Hence, the PCE of a linear policy is again linear
and is represented by the polynomial expansion of the matrix-valued function
ϑ 7→ A(ϑ).

A second popular approach to compute the model’s policy function are
projection methods.15 In this approach g is constructed as a linear combination
of some suitable basis functions Φi by

g(x; ϑ) =

d∑
i=1

ci(ϑ)Φi(x).

The coefficients in the PCE of g with respect to ϑ then satisfy

ĝα(x) =

d∑
i=1

(
∥qα∥−2

L2

∫
Rk

qα(s) (ci(ψ(s))) dPξ(s)

)
Φi(x) =:

d∑
i=1

ĉiαΦ(x),

and the expansion of g can therefore be written as

g(x, ϑ) =
∑
α∈Nk

0

ĝα(x)qα(ψ
−1(ϑ)) =

d∑
i=1

∑
α∈Nk

0

ĉiαqα(ψ
−1(ϑ))

Φ(x),

Now observe that the ĉiα coincide with the coefficients in the polynomial
expansion of the model outcome ci(ϑ), i.e. with the coefficients in the PCE
of the coefficients of the projection solution. Consequently, the PCE of g is
again a linear combination of the basis functions Φi and the coefficients are
represented by the polynomial expansion of ϑ 7→ ci(ϑ).

15See, for instance Judd (1996), Chapter 11, Heer and Maussner (2009), Chapter 6, Judd (1992)
or McGrattan (1999).
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Surrogate for Gradients. The truncated PCE in (11) may also be used to
approximate the derivatives of the mapping h between parameter values and
model outcomes. More specifically, the PCE provides the approximation

∂h

∂ϑi
(ϑ) ≈

∑
α∈Nk

0 ,|α|≤N
ŷα

k∑
j=1

∂qα
∂sk

(ψ−1(ϑ))
∂ψ−1

j

∂ϑi
(ϑ).

This approximation can be useful if such derivatives must be evaluated at a
potential large number of points. One example may be the method proposed
by Iskrev (2010) for conducting local identification analysis which requires
differentiation of the linearized policy function with respect to the parameters.

Discretizing space of cross-sectional distributions

Here, we briefly present the possibility to use PCE in order to discretize the
state space in models where a cross-sectional distribution over heterogeneous
agents becomes a state variable for individual decision rules as suggested by
Pröhl (2017). Her examples are models that combine idiosyncratic income risk
with aggregate productivity risk as Aiyagari (1994). In such models, households
need to know the decision rules of other households in order to form rational
expectations about future aggregates and prices for their own decisions. Yet,
since the decisions of other households depend on their respective individual
states, households need to factor in the whole cross-sectional distribution over
individual states for their own decision. In consequence, the cross-sectional
distribution of individual states becomes an argument of the individuals’ policy
function in such models.

The literature offers different approaches in order to discretize the state
space. Krusell and Smith (1998) suggest a bounded rationality approach and
base the individuals’ policy function only on partial information from the cross-
sectional distribution, e.g. a finite number of moments, and a parametric law
of motion for these measures. The method of Reiter (2009) discretizes the state
space by piecewise uniform distributions over a finite number of histogram
bins. Differently, Pröhl (2017) replaces the cross-sectional distribution as an
argument of the decision rule by the coefficients of its (truncated) PCE given
a choice of germs. More precisely, if ξ denotes the germ with cumulative dis-
tribution function Fξ and µt is the cross-sectional distribution over individual
states in period t, then the random variable

θt := µ−1
t ◦ Fξ ◦ ξ
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is distributed according to µt.
16 One can then compute the coefficients ϑ̂n,t of

its PCE

θt = µ−1
t (Fξ(ξ)) =

∞∑
n=0

ϑ̂n,tqn(ξ)

analog to the methods described in section 3 from

ϑ̂n,t = ∥qn∥−2
L2 ⟨µ−1

t ◦ Fξ, qn⟩L2 = ∥qn∥−2
L2

∫
R
(µ−1
t ◦ Fξ)qn dPξ.

Instead of the cross-sectional distribution µt, one can then use a finite number
of the PCE coefficients ϑ̂n,t as arguments of the individual policy function.

On the one hand, the PCE coefficients ϑ̂n,t then allow to recover the cross-
sectional distribution µt and aggregate variables in period t. On the other hand,
the individual decision rules imply the law of motion of the cross-sectional
distribution, µt 7→ µt+1, and the PCE coefficients ϑ̂n,t+1 of µt+1 can be derived
as above. Hence, the method of Pröhl (2017) does not need a parametric
assumption about the law of motion for the cross-sectional distribution. Pröhl
(2017) shows that this approach provides more precise solutions and thereby,
brings new economic characteristics of those well-known models.

5 Numerical Analysis

In this section we present the numerical implementation of a PCE for a bench-
mark RBC model. First, we analyze the convergence behaviour of the series
expansion for different model outcomes of interest. More specifically, the model
outcomes considered include the linear solution, the second moments and the
impulse response functions of the model’s variables to a one time shock—both
computed from the model’s linear policy—as well as a global projection solu-
tion. Moreover, we compare different methods to compute the PCE coefficients
in terms of accuracy and efficiency. Finally, we perform Monte-Carlo experi-
ments where we evaluate the performance of the PCE for empirical applications
as matching moments and likelihood-based approaches.

16Note that θt does not denote a model parameter in this context as in the rest of the present
paper. Instead, θt is a random variable that is distributed according to the cross-sectional distri-
bution µt and that is a function of the germ. Hence, θt can be interpreted as the random variable
constructed from the basis ξ that describes a random draw from the mass of heterogenous agents
in period t.
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5.1 The model

We consider a benchmark RBC model where the social planner solves the
following maximization problem

max
Yt,Ct,Nt,Kt+1

U0 := E0

[ ∞∑
t=0

βt
C1−η
t (1−Nt)

γ(1−η)

1− η

]
,

s.t. Ct = Yt −Kt+1 + (1− δ)Kt,

Yt = eztKζ
tN

1−ζ
t ,

given K0, z0,

where Yt, Ct, Nt, and Kt denote output, consumption, working hours, and the
capital stock, respectively. Moreover, the log of total factor productivity, zt,
evolves according to the AR(1) process

zt+1 = ρzt + ϵt+1, ϵt ∼ iidN(0, σ2).

The predetermined state variables xt and the non-predetermined control
variables yt are

xt :=

(
Kt

zt

)
and yt :=

YtCt
Nt

 .

5.2 Convergence Behaviour

First, in order to study the basic convergence behaviour of the PCE for various
model outcomes in the benchmark RBC model, we consider an example where
we set the uncertain parameters to θ :=

(
ζ η ρ

)
. Moreover, we assume the fol-

lowing probability distributions for the (stochastically independent) unknown
parameters

ζ ∼ 0.15 + 0.3 · Beta(5,7), η ∼ 1 + 7 · Beta(3,7), ρ ∼ 0.85 + 0.14 · U(0, 1).

The probability density functions with support Θ := [0.15; 0.45] × [1; 8] ×
[0.85; 0.99] are illustrated in Figure 2. The transformations ψi between
unknown parameters and germs are fixed as in Table 2 and the remaining
parameters are calibrated as summarized in Table 3.

Linear Policy Function

The first model outcome which we consider is the model’s linear solution which
is of the form (

xt+1

yt

)
= A(ϑ)xt.

Given any parameter values ϑ ∈ Θ the matrix A(ϑ) = (aij(ϑ))i=1,...,6
j=1,2

∈ R6×2

can be easily computed numerically from available methods. As described in
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Fig. 2: Distributions of uncertain parameters I

Table 3: Calibration I

Parameter Description Value

β Discount factor 0.994
δ Rate of capital depreciation 0.014
N Steady state labor supply1 0.300
σ Standard deviation 0.010

1Instead of pinning down the value of γ we set the steady state value of N = 0.3 and the
model’s steady state determines γ.

section 4, the expansion of the linear policy function is again linear and is rep-
resented by the polynomial expansion of A(ϑ). Hence, our task is to construct
for each mapping aij : ϑ 7→ aij(ϑ) the truncated PCE17

a
(N)
ij (ϑ) := Stot

N (aij ◦ ψ)(ψ−1(ϑ)) =
∑

α∈N3
0,|α|≤N

âijαqα(ψ
−1(ϑ)). (12)

Moreover, we first want to abstract from errors in the computation of the
expansion coefficients âijα and to focus on the convergence behaviour of

a
(N)
ij → aij in L

2 as N → ∞. Therefore, we compute the coefficients from full-
grid Gauss-quadrature rules with a sufficiently large number of nodes which
should guarantee that integration errors in (7b) (where now h = aij) remain
insignificant. More concretely, we apply N + 5 nodes in each of the three one-
dimensional quadrature rules. We compute the coefficients from the quadrature
rules and determine the L2 error from

∥a(N)
ij − aij∥L2 =

(∫
R3

(
a
(N)
ij (ϑ)− aij(ϑ)

)2
dPθ

)1/2

≈

(
1

M

M∑
i=1

(
a
(N)
ij (ϑ(i))− aij(ϑ

(i))
)2)1/2

(13)

17We only discuss the mappings ϑ 7→ aij(ϑ) for i = 1, 3, . . . , 6 and j = 1, 2 since the expansion
of the exogenous AR(1)-process (i = 2) w.r.t. ρ is trivial.
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where we draw M = 105 iid sample points ϑ(i) from the distribution of θ.
The results are presented in Figure 3a in log10-base for N = 1 to N = 19
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Fig. 3: L2 convergence of PCE and computation time on an Intel® Core�i7-
7700 CPU @ 3.60GHz

and suggest linear convergence of the series expansions for each aij . The L
2

error for all components of the matrix already falls to the order of magnitude
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of −3 for N = 7 and is as low as −6 for N = 19. Moreover, Figure 3b also
shows the time needed for all computations. In case of the PCE, the total time
reported includes i) the computation of expansion coefficients âijα from the
full-grid quadrature rules which require (N+5)3 model evaluations and ii) the

subsequent (trivial) evaluation of the truncated PCE a
(N)
ij (ϑ(i)) at the 100,000

sample points. For comparison, we also show the computational time which
is required to determine the model solution aij(ϑ

(i)) repeatedly at all 100,000
sample points. Most importantly, since even for N = 19 the number of model
evaluations for the construction of the PCE is significantly smaller at 13824
than the number of evaluation points, the time required by the PCE remains
less than one-third of the time needed for repeatedly solving the model.

Second Moments

The second model outcome we consider are the model’s second moments.
More specifically, we consider the variables’ standard deviations and the
correlations obtained from the model’s linear policy. Instead of relying on
simulations, we employ available formulae for moments of first-order autore-
gressive processes to the linear solution. We proceed the same way as in the
preceding paragraph and compute for each moment, say x, a series expansion
x(N) :=

∑
α∈N3

0,|α|≤N x̂αqα(ψ
−1(ϑ)). Importantly, note that we directly con-

struct the PCE of the second moments, i.e. of the mapping ϑ 7→ x(ϑ). An
alternative approach to employ PCE for the second moments would be to first
construct the PCE of the linear policy and to subsequently use this PCE of
the linear policy to compute the second moments.

Figure 3c again shows linear convergence of the PCEs for each second
moment. The L2 error in the approximation of the model’s moments has fallen
to the order of magnitude of −3 by N = 7 and further declines to −6 by
N = 19. Moreover, the computation time of the PCE versus the time for
repeated computations the model’s moments is illustrated in Figure 3d. For
the same reasons as before, the time needed by the PCE remains throughout
significantly lower than the time required for repeated calculations.

Impulse Response Function

The next model outcome we discuss are the variables’ impulse response func-
tions in response to a one time shock to TFP by one conditional standard
deviation. For the sake of exposition, we only consider the variables’ outcomes
for the next four periods after the shock hits the economy and add the remark
that the series expansions become more trivial for later periods where the vari-
ables converge back to their stationary values. Hence, we construct PCEs for
all variables’ outcomes, say Xt+s, for periods s = 0, . . . , 4. Note again that the
PCE is constructed directly for each mapping ϑ 7→ Xt+s(ϑ).

We show the L2 errors over the unknown parameters’ support in Figure
3e. Convergence is again linear as N → ∞ and the L2 errors for all variables’
outcomes fall to the order of magnitude of −5 by N = 19. Furthermore, the
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computation time of the PCE remains throughout far below the time required
for repeated computations of the model’s IRFs.

Projection Solution

The last model outcome for which we want to illustrate the convergence behav-
ior is the model’s projection solution computed from Chebyshev polynomials as
basis functions. More specifically, we define kt := ln(Kt/K

⋆(ϑ)) where K⋆(ϑ)
is the capital stock’s stationary solution and approximate the policy function
for working hours by

nt = g(kt, zt; ϑ) =
∑
i+j≤4

ci,j(ϑ)Ti

(
2
kt − k

k̄ − k
− 1

)
Tj

(
2
zt − z

z̄ − z
− 1

)
,

where we further introduce the transformation nt := ln(Nt/(1−Nt)). The Ti
are Chebyshev polynomials of degree i and [k; k̄]×[z; z̄] = [ln(0.8); − ln(0.8)]×
[−3 σ√

1−ρ2
; 3 σ√

1−ρ2
] is the domain of the approximation g. The remaining

variables are computed analytically from kt, nt and zt and the coefficients
ci,j(ϑ) are determined such way that the model’s Euler equation holds exactly
at 13 appropriately selected collocation points.18

We discussed in section 4 that the expansion of the projection solu-
tion is again a linear combination of the same basis functions, i.e. of Ti1Ti2
with i1 + i2 ≤ 4, and the coefficients are given by the series expansions of

the mappings ϑ 7→ ci,j(ϑ). Hence, we construct truncated PCEs, c
(N)
i,j :=∑

α∈N3
0,|α|≤N ĉijαqα(ψ

−1(ϑ)) from full-grid quadrature rules with N +5 nodes

in each dimension. The L2 error, ∥c(N)
i,j −cij∥L2 , in log10-basis is again decreas-

ing linearly as N → ∞ as displayed in Figure 3g and the time for construction
and evaluation of the PCEs in Figure 3h remains throughout significantly
smaller than the time for repeated computations of the global solution.

5.3 Computation of PCE Coefficients

In the previous subsection our focus was on the convergence behavior of the
PCE when the degree of truncation N was increased. We therefore abstracted
from possible errors in the computation of the PCE coefficients and employed a
full-grid quadrature rule with sufficiently many nodes. While full-grid quadra-
ture rules have the favorable property that the number of nodes can be easily
chosen in such way that they provide exact integration rules for polynomials up
to the desired degree, the number of nodes grows exponentially in the dimen-
sion of the parameter vector. Hence, they may provide the most convenient way
for computation of the PCE coefficients when the number of unknown parame-
ters is not too large, but they become quickly ineffective in higher dimensional
problems. If the PCE coefficients are determined from alternative methods,

18The collocation points are combinations of the zeros of the Chebyshev polynomials in the
approximation.
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the approximation error of the feasible PCE does not only include the error
from truncation of the series expansion but additionally from a potentially less
accurate approximation of the PCE coefficients that becomes necessary.

In this section we now switch perspective and analyze the convergence
behavior of the PCE when its coefficients are computed from different methods.
Next to the benchmark full-grid quadrature rule, the PCE coefficients are
additionally approximated by a sparse-grid Smolyak quadrature rule and by
least squares. Sparse-grid methods as well as least squares give fundamentals
for a rising number of more efficient alternatives. Kaintura et al (2018) and
Harenberg et al (2019) give a short discussion.

We apply our analysis to the PCE of the model’s linear solution but now
consider a higher dimensional problem. The vector of unknown parameters
expands to θ :=

(
ζ η ρ β δ γ

)
.19 The assumed distributions for ζ, η and ρ

remain as before in Figure 2 and the distributions of the additional unknown
parameters are chosen as

β ∼ 0.9 + 0.09 ·Beta(7,4), δ ∼ 0.01 + 0.01 ·Beta(3,3), γ ∼ 1.5 + 1 ·Beta(5,4).

The probability densities for β, δ and γ are visualized in Figure 4.
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Fig. 4: Distributions of uncertain parameters II

We compute the truncated PCE (12) for each mapping aij : ϑ 7→ aij(ϑ) in
the linear policy A(ϑ) = (aij(ϑ))i=1,...,6

j=1,2
∈ R6×2. The PCE coefficients are now

determined either by i) a full-grid Gauss quadrature rule with N + 1 nodes
for each parameter (FGQ), ii) a sparse-grid Smolyak-Gauss quadrature rule
with linear growth where the level is set such way that the one-dimensional
quadrature rules include the nodes up to degree N+1 (SGQ), iii) least squares
where the number of sample point is set either twice (LSMC1) or iv) three
times as large as the number of unknown PCE coefficients (LSMC2). After
construction of the truncated PCE by each of the four methods, we compute
the PCE’s L2 error as in (13) from a draw of M = 105 iid sample points from
the parameter’s distribution.

19These are all of the model’s parameters except the standard deviation σ which does not affect
the model’s linear policy.
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Fig. 5: L2 Convergence of PCE with approximated coefficients and computa-
tion time on an Intel® Core�i7-7700 CPU @ 3.60GHz I

Figure 5 shows the convergence of the truncated (approximated) PCEs with
approximated coefficients for increasing N . As expected, the PCE constructed
from a full-grid quadrature rule, which should provide the most accurate deter-
mination of the coefficients, also shows the fastest convergence. It is followed
by the PCE constructed from the sparse-grid Smolyak quadrature rule while
the PCEs where the coefficients are computed by least squares perform worst.
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Fig. 6: L2 Convergence of PCE with approximated coefficients and computa-
tion time on an Intel® Core�i7-7700 CPU @ 3.60GHz II

In fact, since inaccuracies in the coefficients of higher degree polynomials may
have large impact on the L2 error of the PCE,20 the PCEs computed from least
squares even show increasing errors for larger N . Yet, the necessary compu-
tations for the full-grid quadrature method also require by far the most time.
Figure 5k shows that by N = 5 the construction and evaluation of the PCE

20Note that the norm of the orthogonal polynomials, ∥qα∥L2 , is increasing in |α|.
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already consumes more time than 100,000 repeated computations of the model
solution. In comparison, the sparse-grid quadrature rule is already significantly
less computationally costly while the least-squares methods are least expen-
sive to compute and remain less time-consuming than repeated computations
of the model solution up to N = 10.

Finally, Figure 6 provides a more convenient illustration of the different
methods’ efficiency and plots the PCEs’ L2 error versus the required computa-
tion time, both in log10-basis. According to this metric the full-grid quadrature
method already performs worst and requires the most computation time to
reach the same quality of approximation as the other methods. The most effi-
cient method is the sparse-grid Smolyak quadrature rule. In the present case
with six unknown parameters, it reaches an approximation with L2 error of
order of magnitude of −4 before the required time for the PCE’s construction
exceeds the time for 100,000 repeated computations of the model solution.

5.4 Monte Carlo experiments for empirical methods

Design

Our Monte Carlo study follows Ruge-Murcia (2007) and analyzes the perfor-
mance of PCE when applied to different estimation methods. We set the vector
of uncertain parameters to θ := (β, ρ, σ) and choose the following probability
distributions with support Θ := [0.97; 0.999] × [0.75; 0.995] × [0.004; 0.012]
for the unknown parameters:

β ∼ 0.97+0.029·Beta(2,2), ρ ∼ 0.75+0.245·Beta(2,2), σ ∼ 0.004+0.009·U(0, 1).

Figure 7 illustrates the uncertain parameters’ probability densities and the
remaining parameters are calibrated as summarized in Table 4.

The simulated data and the subsequent estimation of the parameters are
both from a linearized model. While the advantage of PCE increases with more
sophisticated solution techniques, i.e., non-linear solutions, there are two rea-
sons to confine to linear solutions. First, for linear models, there are analytical
forms for second moments (GMM) and the likelihood function. Thus, differ-
ences in the estimated parameters between PCE and the benchmark (solving
the model repeatedly) can be solely attributed to the approximation with PCE.
Secondly, with too time-consuming solutions, the Monte Carlo study of the
benchmark becomes infeasible.

Matching Moments

To estimate the parameters by matching moments, we choose the following 5
targets: i) the variance of output and of working hours, ii) the autocovariance
(lag 1) of output and of working hours, and iii) the covariance between output
and working hours. We draw a sample ϑ(i), i = 1, . . . ,M , of size M = 1, 000
from the distribution of the unknown parameters. In a first step, we compute
the linear approximation of the policy function and the second moments for
each ϑ(i) in the sample. Subsequently, we feed the computed second moments
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Fig. 7: Distributions of uncertain parameters III

Table 4: Calibration II

Fixed Parameter Description Value

ζ Capital share 0.37
δ Rate of capital depreciation 0.014
N Steady-State labor supply 0.3
η Risk aversion 2

Uncertain Parameters Description Distribution

β Discount factor β ∼ 0.97 + 0.029 · Beta(2,2)
ρ Persistence ρ ∼ 0.75 + 0.245 · Beta(2,2)
σ Standard deviation σ ∼ 0.004 + 0.009 · U(0, 1)

as targets to an optimizer and (point) estimate the unknown parameters by
the method of matching moments. When minimizing the objective function,
we distinguish the following three cases in order to evaluate the model’s sec-
ond moments for different parameter values: i) repeatedly solving the model
and computing the second moments (benchmark), ii) constructing the PCE of
the linear approximation of the policy function which we then evaluate and
use to compute the variables’ second moments (h(φ) = g(x; φ)) or iii) con-
structing the PCE of the model’s second moments which we then evaluate
(h(φ) becomes directly the five mentioned targets). We compute the second
moments either from analytic formulae for the linear solution (GMM) or from
a simulation with T = 10, 000 periods (SMM). We adapt the truncation degree
and quadrature level manually to achieve a sufficient accuracy to demonstrate
the capabilities.21 After obtaining the parameters’ estimate ϑ̂(i), we define the

PCE error by the deviation between the realized point estimate ϑ̂
(i)
PCE from

a PCE based method and the estimate ϑ̂
(i)
BM obtained from the benchmark

method, i.e.

ϵ
(i)
j = 100

∣∣ϑ̂(i)j,PCE − ϑ̂
(i)
j,BM

∣∣
ϑj,max − ϑj,min

, j ∈ {β, ρ, σ}, i = 1, ...,M,

21We discuss heuristics for the choice of the truncation level below.
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where j indicates the estimator of the particular parameter and ϑj,max and
ϑj,min denote the upper and lower bound of θj ’s prior support. Table 5 presents
the results for GMM. We provide the computation time, the mean, the median,
the 5 percentile and the 95 percentile of the PCE error ϵj from M = 1, 000
estimations. We find that the policy function’s PCE provides a remarkably well
approximation which results in deviations from the benchmark mostly smaller
than one permille in comparison to the range of the parameter’s distribution.
Estimation errors rise if the model’s second moments are directly approximated
by PCE. However, the average relative errors remain below two permille for
all parameters and is almost always less than half a percent, again relative
to the parameter’s range. Using the PCE of the policy function reduces the
computation time on average by 60 percent while the PCE of the second
moments is more time consuming than the benchmark. Nevertheless, the pure
estimation procedure of the second moments’ PCE is on average more than 25
percent faster than the estimation procedure of policy function’s PCE.

Since analytic formulae for the model’s moments are only available for
the linear solution, GMM can only be employed for a linear approximation
where computation time is rarely a limiting factor. If the model demands non-
linear solutions, one has to resort to simulations in order to derive the model’s
moments. However, the computation of non-linear solutions and the simulation
of model outcomes increase the computational effort significantly. Working
with the PCE of the policy function reduces the former burden while working
with the PCE of the second moments helps to reduce both burdens. The results
for our Monte-Carlo experiment with SMM are summarized in Table 6.

We find again that the policy function’s PCE provides a remarkably well
approximation which results in errors mostly smaller than 2.5 permille in com-
parison to the range of the parameter’s distribution. Similar to GMM, errors
rise if the model’s second moments are directly approximated by PCE. How-
ever, the average relative errors remain around or below one percent for all
parameters and are almost always less than 2.5 percent. Using the PCE of
the policy function reduces the computation time on average by 50 percent
while the PCE of the second moments reduces them only by 20 percent. How-
ever, the pure estimation procedure of the second moments’ PCE is on average
more than 99 percent faster than the estimation procedure of policy function’s
PCE. This illustrates the efficiency of PCE once the expansion of the QoI is
calculated.

Likelihood-based Estimation

We proceed to analyze the performance of PCE in MLE and in BE. More
precisely, we now draw a sample of size M = 500 from the distribution of
the unknown parameters. We approximate linearly the policy function and
simulate a time-series of output Yt for T = 200 periods for each ϑ(i) in the
sample.22 We treat the simulated time-series as observations from which we
either (point) estimate the parameters by MLE or conduct BE.

22More precisely, we generate a sample of size T = 300 and burn the first 100 observations.
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In the case of MLE we distinguish the following three methods to evaluate
the observations’ likelihood for different parameter values: i) repeatedly solving
the model and computing the likelihood (benchmark), ii) constructing the PCE
of the linear approximation of the policy function which we then evaluate and
use to compute the likelihood (h(φ) = g(x; φ)) or iii) constructing the PCE of
the likelihood which we then evaluate (h(φ) = L(Y1:T ; φ)). In order to avoid
problems with weak identification and in order to focus on the quality of PCE
in the estimation procedure, here MLE is unusually applied to data in levels
instead of the relative deviation from steady state.

For BE the priors remain the same as in Table 4. Moreover, we again con-
sider three methods to evaluate the posterior where the first two are analogous
to i) and ii) above while iii) now involves constructing the PCE of the poste-
rior’s kernel (h(φ) = L(Yt; φ)p(φ), where p(φ) is the prior of φ). For each of
the three methods we derive the posterior’s mean as well as several quantiles
of the posterior distribution from a standard random walk Metropolis Hast-
ing (RWMH) algorithm with 100,000 draws from the posterior kernel.23 We
measure the accuracy of the PCE based methods for each statistic of the pos-

terior, say x, by computing the deviation between the statistic x̂
(i)
j,PCE obtained

from the PCE based method and the statistic x̂
(i)
j,BM from the benchmark

method by

ϵ
(i)
j,PCE(x) = 100

∣∣x̂(i)j,PCE − x̂
(i)
j,BM

∣∣
ϑj,max − ϑj,min

.

Again, we adapt the truncation degree and quadrature level manually to
achieve a sufficient accuracy.

Table 7 displays the results from MLE. First, deviations between the esti-
mates from the method based on the policy function’s PCE, the likelihood
function’s PCE, and from the benchmark version remain remarkably small.
The average error concerning the policy function’s PCE estimation is smaller
than one permille in comparison to the benchmark and relative to the range of
the parameter. Furthermore, as the 95 percentile is smaller than the average,
the error is mostly smaller than the average. The same holds for the estima-
tion with the likelihood function’s PCE. The average error is less than a half
percent and the median is less than one permille. Using the PCE of the pol-
icy function does not reduce the computation time significantly, because the
evaluation of the likelihood-function is the time consuming part. For this rea-
son, using the PCE of the likelihood-function is much more efficient. The total
procedure is about 50 percent faster than the benchmark on average and the
pure maximization procedure takes less than half a second on average.

Finally, Table 8 and Table 9 summarize the results from the PCE based
methods—approximation of the policy function or of the kernel of the
posterior—in BE. First, the errors between the two approximations are virtu-
ally the same. The average errors of the means and the medians are less than

23For the results we burn the first 50,000 draws.
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or equal to one fourth of a percent. While deviations slightly increase for esti-
mates of the posterior’s lower and upper quantiles, they remain almost always
less then 1.25 percent. Recognizing the fact that errors may be partly caused
by the RWMH algorithm itself, the deviations between the methods are negli-
gible. Using the PCE of the policy function does not reduce the computation
time significantly, because the evaluation of the likelihood-function is likewise
the time consuming part. For this reason, the PCE of the likelihood-function
is much more efficient and nearly 99 percent faster than the benchmark.24

5.5 Estimation based on the global solution

We proceed with our analysis by conducting the previous likelihood-based
estimation for global, i.e., non-linear model solutions. On the one hand, the
model’s linear solution allowed an analytical derivation of the objective func-
tion of the estimations and, consequently, an exact assessment of the goodness
of their PCE approximation. On the other hand, the solution and the deriva-
tion of the objective functions are fast by themselves. Consequently, time is
not critical. Non-linear solutions and likelihood function evaluation with par-
ticle filters rely on numerical, partly Monte Carlo, methods, which makes the
assessment vague. However, these methods are time-consuming, making PCE
an interesting method to overcome these burdens.

We follow Fernández-Villaverde and Rubio-Ramı́rez (2005). The authors
show that the non-linearities are crucial for parameter inference, even for
our benchmark RBC model. We deviate from our previous study and fol-
low Fernández-Villaverde and Rubio-Ramı́rez (2005) by considering only one
true value for the parameters θo and the prior distribution choice, which is
now uniform in all dimensions. The latter allows us to focus on the effects
of the non-linear solution. The former is to evaluate our estimators by com-
paring the estimated average with the true values, as an exact objective
function for the assessment is missing. We set the true parameter values
θo = {βo, ρo, ωo} = {0.985, 0.9725, 0.0085} and the priors

β ∼ 0.98+0.01 ·U(0, 1), ρ ∼ 0.75+0.245 ·U(0, 1), σ ∼ 0.004+0.009 ·U(0, 1).

Note that the domain of the priors for ρ and ω remains while for β, the domain
shrinks. The latter is because β is well-identified. Outside this domain, the
likelihood is too small (< exp(−1000)) for an accurate particle filter evaluation.
In the discussion below, we devote ourselves to cases where the model outcome
is not well-defined or cannot be computed in a numerically stable way at all
nodes of the quadrature rules.

Lastly, some information on the non-linear solution and the particle fil-
ter: we apply the projection solution described above with [k; k̄] × [z; z̄] =
[ln(0.9); − ln(0.9)]× [−2 σ√

1−ρ2
; 2 σ√

1−ρ2
] and use a generalized bootstrap par-

ticle filter with 2,000 particles (see Herbst and Schorfheide, 2016, Algorithm

24It must be mentioned that a higher number of parameters leads to a decrease in efficiency.
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14)). We conduct the exercises for M = 96 different datasets, each simu-
lated using the globally solved model. If not otherwise stated, we still obeserve
T = 200 periods of Yt.
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Fig. 8: ML from various likelihood approximations (M = 96). PCE: PCE
approximated likelihood from a particle filter, SPCE: Only successfull PCE
approximations (MS), i.e., exclusion of maxima at the parameter bounds. Lin-
Rep: Repeated likelihood evaluation using the Kalman Filter from the linear
model solution. N equals the truncation level, the quadrature level equals N+1.
Computation time on one core of an AMD® EPYC�7313 (Milan) CPU @
3.00GHz

Maxmimum Likelihood. In the maximum likelihood analysis, we can only
compare the maximum of the likelihood from the Kalman filter using a lin-
ear solution and of the PCE approximated likelihood as the likelihood directly
from the particle filter is not differentiable—ruling out gradient-based opti-
mizer. The literature refers to the use of differentiable likelihood surrogates
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or non-gradient-based optimizers. While the latter is a research topic itself,
we contribute to the former idea by assessing the possibility of surrogate the
likelihood with PCE.25

Figure 8 presents the results dependent on the truncation level (N ∈
{8, 9, ..., 14}). The upper three panels ((a)–(c)) display the bias of the estima-
tors relative to the true parameter values, and the middle three panels ((d)–(f))
the relative standard deviations of the estimators. The last two panels ((g)
and (f)) indicate the amount of a successful PCE approximation, i.e., inner
maxima (g), and the time differences (f). It turns out that both approxima-
tions (linear solution and PCE surrogated likelihood) estimate on average β
well. Both are on average within the range of ±0.02%. The estimates for ρ are
more biased. Yet, for truncations N ≥ 10, the PCE estimator becomes notice-
ably less biased. The biggest difference between the estimation strategies is
concerning σ. While for N ≥ 10 the PCE estimates fluctuate close around the
true value, the estimate from the linear solutions deviates on average by 3.25%
from the parameter’s true value. The analysis shows, that the estimators of
the PCE surrogate are less or equal biased. Yet, the estimators fluctuation is
higher. However, the estimators standard deviation converges with N to the
standard deviation of the linear solution estimates and are already similar for
β and σ for N ≥ 13.

The amount of successful PCE, i.e., likelihood maxima at the bounds,
increases from 85% for N = 8 above 95% for N ≥ 8 and equals 100% for
N = 14. One maximization with the PCE approximation takes on average
between 9 (N = 8) and 40 min (N = 14) and takes much longer than with
the use of the linear solution (14 sec). However, the duration of the likelihood
evaluation of the non-linear model is still quick and can be reduced easily and
drastically via parallelization.26

Finally, the problem arises in whether the estimator’s standard deviation
and the remaining bias arise generally from the maximum likelihood method
and the particle filter or from limitations of the PCE approximation. We can
identify the reasons by improving the properties of the true MLE and the
particle filter. To decrease the bias and standard deviation of the true MLE,
we increase the number of observations (T=500) c.p., and to decrease the
noise in the particle filter, we increase the number of particles to 10,000 c.p.
Appendix D presents the results (Figure D3 and D4). The additional infor-
mation (T=500) leads to a similar decreasing standard deviation of the both
estimators the PCE surrogate likelihood and the likelihood from the model’s
linear approximation. However, while the bias of the MLE from the PCE sur-
rogate likelihood shrinks further, the bias of the MLE from the linear solution
only decreases for ρ. The bias for β and σ remain or even increase. Further,

25Note that in our example the PCE likelihood surrogate MLE is on average more accurate
than the average posterior modes from the repeated global solution sampler.

26We use here only one core. Hence the computational time for the PCE approximation can be
roughly divided by the amount of available cores, e.g., with > 160 cores, the N = 14 approximation
should become faster than the linear approximation, ignoring workers allocation time.
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with more information, the PCE approximation becomes more stable. Regard-
ing the higher amount of particles, there is unsurprisingly no improvement in
the bias of the estimates from the PCE approximated likelihood. However,
the estimator’s standard deviation decreases for all considered truncation lev-
els. With these two results, we conclude that PCE approximation errors are
neither the drivers of the remaining inaccuracies nor limits a higher accuracy.

Bayesian Estimation. Note that in a Bayesian context besides the mode we
cannot observe the true statistics of the posterior distribution. Since, the pos-
terior statistics obtained from the global projection solution and the generic
bootstrap particle filter should be at least unbiased (see Fernández-Villaverde
and Rubio-Ramı́rez, 2005) we use them as a benchmark case and compare it
with three other methods to evaluate the posterior: i) the linear approximate
solution combined with a likelihood obtained from the Kalman-Filter, ii) the
PCE surrogate of the posterior kernel, iii) and the PCE approximation of the
global projection solution together with the likelihood from the generic parti-
cle filter. We set the PCE truncation level and quadrature level for both QoIs
to N = 13 and M = N + 1, respectively.

As in the linear setup we use the RWMH algorithm to generate 100,000
draws from the posterior distribution. However, since initializing the algorithm
at the posterior mode is difficult when the likelihood is approximated by a
particle filter (see the discussion above), we depart from the linear setup and
specify the algorithm’s proposal density using estimates of the posterior mean
and variance. We obtain these estimates from 10,000 additional draws from
a RWMH algorithm based on a proposal density pinned down by the prior’s
mean and variance.

Figure 9 displays the mean absolute deviations (relative to the range of the
parameter’s distribution) of the three competing methods to the benchmark
case for various posterior statistics.27

For all three estimation parameters and all displayed statistics of the poste-
rior, the PCE extension of the global projection solution yields the estimation
results that come closest to the benchmark case. While the average absolute
deviation is well below half a percent for all parameters, the average time
required for one estimation (17h:45m:11s) is only around half an hour less
compared to the benchmark (18h:17m:37s). However, this difference should be
much more pronounced with more computing-intensive models.

In contrast, the estimates based on the linear approximation of the model
solution are computationally much more favorable (00h:05m:45s), but also
deviate the most from the benchmark case with an average absolute devi-
ation from just under two to almost four percent. In line with the results
by Fernández-Villaverde and Rubio-Ramı́rez (2005), we document that for
the parameter σ the deviations vary systematically for different percentiles
of the posterior, as the mean absolute deviations between the linear and the

27We provide the complete estimation results (incl. various error percentiles) in Tables D2 to
D4 in Appendix D.
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Fig. 9: Observable: Output Yt. ϵ̄j : mean error. Errors are expressed as devi-
ations from the benchmark method of repeatedly solving the (global) policy
function in percent of the range of the parameter’s distribution. N = 13 equals
the truncation level, the quadrature level equals N +1. Performed on one core
of an AMD® EPYC�7313 (Milan) CPU @ 3.00GHz.

global benchmark estimation method decrease by more than one and a half
percentage points from the 5-th to the 95-th percentile.

For β the deviations between the PCE expansion of the posterior kernel
and the benchmark case are similar to those of the linear approximation of the
model solution. However, for ρ and in particular σ, the results are significantly
closer to the benchmark method, with about one and almost two percentage
points lower deviation. This, together with the fact that the computational
time required (00h:32m:27s) is significantly lower, makes the PCE surrogate
of the Posterior kernel a promising alternative to the benchmark method.
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Discussion

Our study of PCE in estimation of a standard RBC model shows that the PCE
based methods can accurately reproduce the same results as the benchmark
method of repeatedly solving the model. Gains in efficiency are larger than
50 percent for matching moments if the PCE of the policy function is used
and for MLE if the PCE of the likelihood-function is used. Additionally, we
show the gains in efficiency are almost 99 percent for BE with the chosen
numbers of parameters, truncation degree, and quadrature level if the PCE of
the posterior’s kernel is used.

In our specification of the prior distributions we shape and shift the dis-
tributions in order to achieve compactness of the support. This procedure is
unconventional in Bayesian estimation of DSGE Models but helps for PCE.
First and foremost, compactness of the support helps to create a setting where
the mapping from parameters to the model outcome is square-integrable. Sec-
ond, it is indispensable for the construction of the PCE coefficients that the
model outcome is well-defined and can be computed in a numerically stable
way at all nodes of the quadrature rules.28 Here, importance sampling for least
squares, adaptive sparse grids or grid domain reductions produces a remedy.29

In non-Bayesian approaches, the application of PCE demands the otherwise
not necessary specification of prior distributions. As L2 convergence of the
series expansion is achieved w.r.t. this prior distribution of the parameters,
estimation results become less accurate if the true parameter value is at odds
with the choice of priors, especially if the true parameter is outside the prior’s
domain.30

Similarly, Lu et al (2015) show that the use of PCE for BE may be
inaccurate in two cases. First, the QoI is represented poorly by a low-order
polynomial. Second, the posterior mass is in other regions than the prior mass.
To solve these problems, they suggest an adaptive increasing polynomial order
by verifying the accuracy at the next evaluation point. As our manual adap-
tion is usually not feasible as it requires the benchmark results, this is also a
practical method for determining the truncation level in general. In addition,
a small magnitude of the Nth Fourier coefficient is an indicator for a sufficient
high truncation level.

As PCE is a spectral decomposition approximated with a truncated poly-
nomial expansion, generally, Runge’s and Gibbs phenomena could arise. Both
result in spurious oscillation. Yet, the use of Gaussian quadratures and nodes
prevent the former phenomenon, and the latter phenomenon only appears in
the presence of discontinuity jumps. Problems with the approximation of a
flat function are unknown. Thus, the frequent lack of identification of DSGE
models does not challenge PCE itself.

28For example, larger values of the capital share quickly result in numerical problems for the
computation of the linear approximation of the policy function and a too large distances to the
true parameter result in minus infinity log-likelihood values.

29For the latter, note that the priors must not change as otherwise information from the data
would enter the prior.

30To put it simply, the prior distribution in such cases is only a guess that determines the
accuracy of the solution in different ranges of parameter values.
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Concerning time, the success of PCE is determined by the ratio of the
number of model evaluations necessary to compute the coefficients and the
number of model evaluations for the exercise at hand. Hence, PCE works
best in cases with a small number of unknown parameters where the exercise
demands many model evaluations. On the one hand, PCE loses efficiency in
higher dimensional problems. On the other hand, most exercises are recur-
sive (Monte Carlo sampler, gradient-based optimizer, etc.), where the model
evaluations are independent of each other for the construction of PCE. This
independence makes the costly evaluations parallelizable—reducing the curse
of dimensionality drastically with the assistance of cluster or cloud comput-
ing. In addition, Soize and Desceliers (2010) develop a time reduction for the
evaluations from the constructed PCE.

Finally, our analysis is limited to an ergodic, stable stochastic process.
However, Ozen and Bal (2016) show that, with some adaptions, PCE becomes
suitable for time-dependent solutions and Jacquelin et al (2015) for models
with deterministic eigenfrequencies.

6 Conclusion

The present article discusses the suitability of PCE for computational models
in economics. For this purpose, we first provide the theoretical framework for
PCE, review the basic theory, and give an overview of common distributions
and corresponding orthogonal polynomials. We show how to evaluate statis-
tical properties of the QoI from the PCE and how to use the expansion as a
pointwise approximation for the QoI. Further, surrogates for a linearized policy
function, for a policy function based on projection methods, and for gradients
of the model’s QoI are presented.

Second, we analyze PCE when applied to a standard RBC model and
provide practical insights. We study convergence behavior for various QoIs
and compare the most common methods to compute the PCE coefficients
for a lower dimensional and a higher dimensional problem. For the higher
dimensional problem with six unknown parameters, sparse-grid quadrature is
the most efficient method compared to least squares and a full-grid quadrature.
Monte Carlo experiments for different empirical methods show that the PCE
based methods can accurately reproduce the same results as the benchmark
method of repeatedly solving the model. Gains in efficiency are large, especially
for Bayesian inference.

Our discussion addresses potential drawbacks of the method. First, the
efficiency of PCE critically suffers from the curse of dimensions in problems
with a large number of unknown parameters. Further, poorly chosen priors
may affect the accuracy of the estimates.

Despite of these potential drawbacks, PCE is a powerful tool for a broad set
of applications. We hope that the article can encourage applications of PCE in
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economics, especially for parameter inference in complex models where stan-
dard techniques are infeasible or when time is critical as in real-time analysis
of high-frequency data.

Supplementary information. MATLAB® code and replication file are
available at www.johanneshuber.de/PCE.
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Appendix A Orthogonal Polynomials

We give a short overview for the families of orthogonal polynomials summa-
rized in Table 2. More details, in particular regarding their completeness in
the respective Hilbert spaces L2 of square integrable functions, can be found
in Szegő (1939).

A.1 Hermite Polynomials

Hermite polynomials are defined by the recurrence relation

H0(x) = 1, H1(x) = 2x, Hn+1(x) = 2xPn(x)− 2nPn−1(x), n ≥ 2

and form a complete orthogonal system on L2(R,B(R), w̃(x) dx) with weight-
ing function

w̃(x) := e−x
2

.

More specifically, ∫
R
Hn(x)Hm(x)w̃(x) dx = 2n(n!)

√
πδn,m

https://www.johanneshuber.de/PCE/Supplementary_Material_PCE.zip
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The probability density function of a normal distributed random variable
θ ∼ N(µ, σ2) with mean µ and variance σ2 is given by

fθ(ϑ) =
1√
2πσ

e−
(ϑ−µ)2

2σ2 .

Fixing the transformation between the germ and θ in this case to

ψ(s) := µ+
√
2σs

so that the germ ξ is defined by

ξ := ψ−1(θ) =
θ − µ√

2σ

implies that ξ has probability density function

w(s) = fθ(ψ(s))ψ
′(s) =

1√
π
e−s

2

=
1√
π
w̃(s).

Since w differs from w̃ only by a constant factor, it follows that

L2(R,B(R),dPξ) = L2(R,B(R), w(s) ds) = L2(R,B(R), w̃(s) ds),

and that Hermite polynomials also form a complete orthogonal system in
L2(R,B(R),dPξ) with∫

R
Hn(s)Hm(s) dPξ(s) =

∫
R
Hn(s)Hm(s)w(s) ds

=
1√
π

∫
R
Hn(s)Hm(s)w̃(s) ds

= 2n(n!)δn,m.

Moreover, given the nodes sj and weights ω̃j from the common Gauss-Hermite-
quadrature rule for weighting function w̃, the Gauss-quadrature rule in terms
of weighting function w has the same nodes while the weights are scaled by
ωj =

ω̃j√
π
.

A.2 Legendre Polynomials

Legendre polynomials are defined by the recurrence relation

L0(x) = 1, L1(x) = 2x, (n+1)Ln+1(x) = (2n+1)xLn(x)−nLn−1(x), n ≥ 2
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and form a complete orthogonal system in L2([−1, 1],B([−1, 1]),dx), i.e.∫ 1

−1

Ln(x)Lm(x) dx =
2

2n+ 1
δn,m.

The probability density function of an uniformly distributed random
variable θ ∼ U[0, 1] over [0, 1] is given by

fθ(ϑ) = 1[0,1](ϑ) :=

{
1, if ϑ ∈ [0, 1]

0, if ϑ ∈ R \ [0, 1]

Fixing the transformation between the germ and θ in this case to

ψ(s) :=
s+ 1

2

so that the germ ξ is defined by

ξ := ψ−1(θ) = 2θ − 1

implies that ξ has probability density function

w(s) = fθ(ψ(s))ψ
′(s) =

1

2
1[−1,1](s).

Hence, it follows that

L2(R,B(R),dPξ) = L2(R,B(R), w(s) ds) ≃ L2([−1, 1],B([−1, 1]),ds),

and consequently the Legendre polynomials also form a complete orthogonal
system in L2(R,B(R),dPξ) with∫

R
Ln(s)Lm(s) dPξ(s) =

∫
R
Ln(s)Lm(s)w(s) ds

=
1

2

∫ 1

−1

Ln(s)Lm(s) ds

=
1

2n+ 1
δn,m.

Moreover, given the nodes sj and weights ω̃j from the common Gauss-Legendre
quadrature rule for weighting function w̃, the Gauss-quadrature rule in terms
of weighting function w has the same nodes while the weights are scaled by
ωj =

ω̃j

2 .
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A.3 Jacobi Polynomials

Jacobi polynomials are defined by the recurrence relation

J
(α,β)
0 (x) = 1,

J
(α,β)
1 (x) =

1

2
(α− β + (α+ β + 2)x),

a1,nJ
(α,β)
n+1 (x) = (a2,n + a3,nx)J

(α,β)
n (x)− a4,nJ

(α,β)
n−1 (x), n ≥ 2

where

a1,n = 2(n+ 1)(n+ α+ β + 1)(2n+ α+ β),

a2,n = (2n+ α+ β + 1)(α2 − β2),

a3,n = (2n+ α+ β)(2n+ α+ β + 1)(2n+ α+ β + 2),

a4,n = 2(n+ α)(n+ β)(2n+ α+ β + 2).

They form a complete orthogonal system on L2([−1, 1],B([−1, 1]), w̃(x) dx)
with weighting function

w̃(x; α, β) := (1− x)α(1 + x)β .

More specifically,∫ 1

−1

J (α,β)
n (x)J (α,β)

m (x)w̃(x; α, β) dx

=
2α+β+1

2n+ α+ β + 1

Γ(n+ α+ 1)Γ(n+ β + 1)

Γ(n+ α+ β + 1)n!
δnm.

The probability density function of a Beta-distributed random variable
θ ∼ Beta(α, β) with shape parameters α and β is given by

fθ(ϑ; α, β) =
1

B(α, β)
ϑα−1(1− ϑ)β−1

1[0,1](ϑ).
31

Fixing the transformation between the germ and θ in this case to

ψ(s) :=
s+ 1

2

so that the germ ξ is defined by

ξ := ψ−1(θ) = 2θ − 1

31We denote by B(x, y) the beta function.
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implies that ξ has probability density function

w(s; α, β) = fθ(ψ(s); α, β)ψ
′(s)

=
1

B(α, β)

(
s+ 1

2

)α−1(
1− s+ 1

2

)β−1
1

2
1[−1,1](s)

=
21−α−β

B(α, β)
(s+ 1)α−1(1− s)β−1

1[−1,1](s)

=
21−α−β

B(α, β)
w̃(s; β − 1, α− 1)1[−1,1](s).

Since w(s; α, β) differs from w̃(s; β − 1, α − 1) only by a constant factor, it
follows that

L2(R,B(R),dPξ) = L2(R,B(R), w(s; α, β) ds) ≃
≃ L2([−1, 1],B([−1, 1]), w̃(s; β − 1, α− 1) ds),

and that the Jacobi polynomials {J (β−1,α−1)
n }n∈N0 also form a complete

orthogonal system in L2(R,B(R),dPξ) with∫
R
J (β−1,α−1)
n (s)J (β−1,α−1)

m (s) dPξ(s) =

=

∫
R
J (β−1,α−1)
n (s)J (β−1,α−1)

m (s)w(s; α, β) ds

=
21−α−β

B(α, β)

∫ 1

−1

J (β−1,α−1)
n (s)J (β−1,α−1)

m (s)w̃(s; β − 1, α− 1) ds

=
1

B(α, β)(2n+ α+ β − 1)

Γ(n+ β)Γ(n+ α)

Γ(n+ α+ β − 1)n!
δnm.

Moreover, given the nodes sj and weights ω̃j from the common Gauss-Jacobi-
quadrature rule for weighting function w̃(., β−1, α−1), the Gauss-quadrature
rule in terms of weighting function w(., α, β) has the same nodes while the

weights are scaled by ωj =
21−α−β

B(α,β) ω̃j .

A.4 Generalized Laguerre Polynomials

Generalized Laguerre polynomials are defined by the recurrence relation

La
(α)
0 (x) = 1,

La
(α)
1 (x) = 1 + α− x,

(n+ 1)La
(α)
n+1(x) = (2n+ 1 + α− x)La(α)n (x)− (n+ α)La

(α)
n−1(x), n ≥ 2
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They form a complete orthogonal system on L2([0,∞),B([0,∞)), w̃(x) dx)
with weighting function

w̃(x; α) := xαe−x.

More specifically,∫ ∞

0

La(α)n (x)La(α)m (x)w̃(x; α) dx =
Γ(n+ α+ 1)

n!
δnm.

The probability density function of a Gamma-distributed random variable,
denoted by θ ∼ Gamma(α, β), with shape parameter α and rate parameter β
is given by

fθ(ϑ; α, β) :=
βα

Γ(α)
ϑα−1e−βϑ1[0,∞)(ϑ).

32

Fixing the transformation between the germ and θ in this case to

ψ(s) :=
s

β

so that the germ ξ is defined by

ξ := ψ−1(θ) = βθ

implies that ξ has probability density function

w(s; α, β) = fθ(ψ(s); α, β)ψ
′(s) =

βα

Γ(α)

(
s

β

)α−1

e−s
1

β
1[0,∞)(s) =

=
1

Γ(α)
w̃(s; α− 1)1[0,∞)(s).

Since w(s; α, β) differs from w̃(s; α − 1) only by a constant factor, it follows
that

L2(R,B(R),dPξ) = L2(R,B(R), w(s; α, β) ds)
≃ L2([0,∞),B([0,∞)), w̃(s; α− 1) ds),

32We denote by Γ(x) the gamma function.
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and that the generalized Laguerre polynomials {La(α−1)
n }n∈N0

also form a
complete orthogonal system in L2(R,B(R),dPξ) with∫
R
La(α−1)

n (s)La(α−1)
m (s) dPξ(s) =

=

∫
R
Laα−1)

n (s)J (α−1)
m (s)w(s; α, β) ds

=
1

Γ(α)

∫ ∞

0

La(α−1)
n (s)La(α− 1)m(s)w̃(s; α− 1) ds

=
Γ(n+ α)

Γ(α)n!
δnm.

Moreover, given the nodes sj and weights ω̃j from the common Gauss-
Laguerre-quadrature rule for weighting function w̃(., α − 1), the Gauss-
quadrature rule in terms of weighting function w(., α, β) has the same nodes

while the weights are scaled by ωj =
ω̃j

Γ(α) .

Appendix B Smolyak-Gauss-Quadrature

Suppose that for every i = 1, . . . , k the distribution Pξi of ξi possesses a prob-

ability density function wi, so that w :=
∏k
i=1 wi is the probability density of

Pξ. Then (8b) becomes

ŷα = ∥qα∥−2
L2 ×∫

R
. . .

∫
R
h(ψ(s1, . . . , sk))q1α1

(s1) . . . qkαk
(sk)w1(s1) . . . wk(sk) ds1 . . . dsk.

(B1)

Further suppose that one-dimensional Gauss-quadrature rules corresponding
to weighting functions wi and orthogonal polynomials {qin}n∈N0 are available.
For i = 1, . . . , k let Qi(Mi) denote this one-dimensional Gauss-quadrature rule

with Mi nodes {s(j)i,Mi
}j=1,...,Mi

and weights {ω(j)
i,Mi

}j=1,...,Mi
, i.e.

Qi(Mi)g :=

Mi∑
j=1

ω
(j)
i,Mi

g(s
(j)
i,Mi

) for g ∈ L2
i .

Then choose for each i = 1, . . . , k an increasing sequence of natural numbers
{Mij}j∈N ⊂ N,Mij+1 > Mij and define the difference operator by

∆i1 := Qi(Mi1) and ∆ij := Qi(Mij)−Qi(Mij−1), j ≥ 2.
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The Smolyak-Gauss-quadrature rule of order l ∈ N and with growth rules
given by {Mij}j∈N is defined by

Ql :=
∑
ν∈Nk

|ν|≤k+l

k⊗
i=1

∆iνi .

or equivalently taking care of duplicate terms in the difference operators

Ql =
∑
ν∈Nk

max{k,l+1}≤|ν|≤k+l

(−1)k+l−1

(
k − 1

k + l − |ν|

) k⊗
i=1

Qi(Miνi).

Applying the Smolyak-Gauss-quadrature rule to (B1) in particular yields the
approximation

ŷα ≈

(
k∏
i=1

∥qiαi
∥2L2

i

)−1 ∑
ν∈Nk

max{k,l+1}≤|ν|≤k+l

(−1)k+l−1

(
k − 1

k + l − |ν|

)

M1,ν1∑
j1=1

. . .

Mk,νk∑
jk=1

ω
(j1)
1,M1,ν1

. . . ω
(jk)
k,Mk,νk

× h
(
ψ
(
s
(j1)
1,M1,ν1

. . . s
(jk)
k,Mk,νk

))
× q1α1

(
s
(j1)
1,M1,ν1

)
. . . qkαk

(
s
(jk)
k,Mk,νk

)
.

This procedure requires to evaluate the model outcome of interest

h
(
ψ
(
s
(j1)
1,M1,ν1

. . . s
(jk)
k,Mk,νk

))
at all sparse-grid points.

Appendix C Monomial rules

Stroud (1971) introduces to sparse numerical integration with monomial rules
and presents various rules to integrate in different spaces. In this section we
present some numerical results for the calculation of the PCE coefficients.

C.1 Rosenbrock function

To show the general functioning of the monomial quadrature rules, we first
replicate the exercise of Bhusal and Subbarao (2020), i.e. approximate the
Rosenbrock function

f(x) =

d−1∑
i=1

100
(
xi+1 − x2i

)2
+ (1− xi)

2
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Table C1: Rosenbrock PCE approximation

5-d Rosenbrock PCE approximation

Trunc. lvl. 4 5 6

log10 L
2 Error NGrid log10 L

2 Error NGrid log10 L
2 Error NGrid

Tensor Grid -10.98 3,125 -10.87 7,776 -11.15 16,807
Sparse Grid -9.74 781 -9.70 781 -9.37 2,203
Least Squares -10.91 252 -10.81 504 -10.58 924
CUT-6 1.90 155 2.49 155 3.20 155
CUT-8 -10.44 425 -10.45 425 1.45 425

6-d Rosenbrock PCE approximation

Trunc. lvl. 4 5 6

log10 L
2 Error NGrid log10 L

2 Error NGrid log10 L
2 Error NGrid

Tensor Grid -10.87 15,625 -10.72 46,656 -10.84 117,649
Sparse Grid -9.31 1,433 -9.28 1,433 -8.71 4,541
Least Squares -10.94 420 -10.77 924 -10.60 1,848
CUT-6 2.07 301 2.61 301 3.35 301
CUT-8 -6.93 973 -6.89 973 1.79 937

Tensor grid lvl. = Trunc. lvl.=4 +1, Smolyak, min NGrid, given log10 L
2 Error¡-5, Least

Squares, twice PCE coefficients.

with PCE. We consider the cases where xi ∼ U(−2, 2) and d ∈ {5, 6}. As
Bhusal and Subbarao (2020), we consider the CUT-8 and CUT-6 rules from
Adurthi et al (2018) and full tensor grid, sparse grid, and least squares from
Heiberger et al (2022). We consider a truncation at levels 4, 5, and 6. Lastly,
note that for those dimensions (d ∈ {5, 6}), we could not find any monomial
rules presented by Stroud (1971) higher degree 5 that have solely non-negative
weights and are in the variables space, e.g. the first weight of the fifth degree
rule presented in Judd (1998) (Stroud (1971) Cn5 − 5) becomes -60.44 for
d = 5. Further, the degree 5 rules with solely positive weights approximate the
Rosenbrock function poorly. Lastly, the CUT-8 rule nodes leave the boundaries
of space of xi for d > 6 and has already one negative weight for d = 6.

Table C1 presents the results. The CUT-8 rule performs well for d = 5.
However, the CUT-8 rule is outperformed by Least Squares. The performance
of the CUT-8 becomes worse with d = 6, where one weight becomes negative
(≈ −.5), yet the approximation seems still good.

C.2 RBC Model

Now we replicate the integration analysis of Heiberger et al (2022) (Figure 5
and 6 there) for the CUT rules. Given the results of the previous section, we
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reduce the space to 5 dimensions (β is now fixed) and assume θ−φ̂0

φ̂1
= ψ(s) ∼

B(1, 1) = U(0, 1) for all θ.
Figure C1 and C2 illustrate the analyses. It turns out that the monomial

rule CUT8 outperforms all other sparse methods for truncation at N = 5
and all methods in time at this truncation level. However, a higher trunca-
tion leads to more imprecise approximations. The lack of high degree, high
dimensional monomial rules for different distribution is the problem. However,
suitable cases for existing monomial rules seem to work well, which motivates
further research to find high degree, high dimensional monomial rules for mixed
distributions.

Appendix D Supplementary Results

Figure D3 and D3 contain the supplement MLE results for a sample size of
T = 500 and a particle filter with 10000 particles, respectively. Analogously,
to Tables 8 and 9 the Tables D2 to D4 in this appendix contains the full BE
results based on the global projection solution.
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Fig. C1: L2 Convergence of PCE with approximated coefficients and compu-
tation time on an Intel® Core�i7-7700 CPU @ 3.60GHz
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Fig. C2: L2 Convergence of PCE with approximated coefficients and compu-
tation time on an Intel® Core�i7-7700 CPU @ 3.60GHz
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Fig. D3: ML from various likelihood approximations (M = 96) with T=500.
PCE: PCE approximated likelihood from a particle filter, SPCE: Only suc-
cessfull PCE approximations (MS), i.e., exclusion of maxima at the parameter
bounds. LinRep: Repeated likelihood evaluation using the Kalman Filter from
the linear model solution. N equals the truncation level, the quadrature level
equals N+1. Computation time on one core of an AMD® EPYC�7313 (Milan)
CPU @ 3.00GHz
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Fig. D4: ML from various likelihood approximations (M = 96) with 10,000
particles. PCE: PCE approximated likelihood from a particle filter, SPCE:
Only successfull PCE approximations (MS), i.e., exclusion of maxima at the
parameter bounds. LinRep: Repeated likelihood evaluation using the Kalman
Filter from the linear model solution. N equals the truncation level, the
quadrature level equals N+1. Computation time on one core of an AMD®

EPYC�7313 (Milan) CPU @ 3.00GHz
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